Image Processing Toolbox™
User's Guide

7

MATLAB

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Image Processing Toolbox™ User's Guide
© COPYRIGHT 1993-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

August 1993
May 1997

April 2001

June 2001

July 2002

May 2003
September 2003
June 2004
August 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

First printing
Second printing
Third printing
Online only
Online only
Fourth printing
Online only
Online only
Online only
Fifth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Version 1

Version 2

Revised for Version 3.0

Revised for Version 3.1 (Release 12.1)
Revised for Version 3.2 (Release 13)
Revised for Version 4.0 (Release 13.0.1)
Revised for Version 4.1 (Release 13.SP1)
Revised for Version 4.2 (Release 14)
Revised for Version 5.0 (Release 14+)
Revised for Version 5.0.1 (Release 14SP1)
Revised for Version 5.0.2 (Release 14SP2)
Revised for Version 5.1 (Release 14SP3)
Revised for Version 5.2 (Release 2006a)
Revised for Version 5.3 (Release 2006b)
Revised for Version 5.4 (Release 2007a)
Revised for Version 6.0 (Release 2007b)
Revised for Version 6.1 (Release 2008a)
Revised for Version 6.2 (Release 2008b)
Revised for Version 6.3 (Release 2009a)
Revised for Version 6.4 (Release 2009b)
Revised for Version 7.0 (Release 2010a)
Revised for Version 7.1 (Release 2010b)
Revised for Version 7.2 (Release 2011a)
Revised for Version 7.3 (Release 2011b)
Revised for Version 8.0 (Release 2012a)
Revised for Version 8.1 (Release 2012b)
Revised for Version 8.2 (Release 2013a)
Revised for Version 8.3 (Release 2013b)
Revised for Version 9.0 (Release 2014a)
Revised for Version 9.1 (Release 2014b)
Revised for Version 9.2 (Release 2015a)
Revised for Version 9.3 (Release 2015b)
Revised for Version 9.4 (Release 2016a)
Revised for Version 9.5 (Release 2016b)
Revised for Version 10.0 (Release 2017a)
Revised for Version 10.1 (Release 2017b)
Revised for Version 10.2 (Release 2018a)
Revised for Version 10.3 (Release 2018b)
Revised for Version 10.4 (Release 2019a)
Revised for Version 11.0 (Release 2019b)
Revised for Version 11.1 (Release 2020a)
Revised for Version 11.2 (Release 2020b)
Revised for Version 11.3 (Release 2021a)
Revised for Version 11.4 (Release 2021b)
Revised for Version 11.5 (Release 2022a)
Revised for Version 11.6 (Release 2022b)
Revised for Version 11.7 (Release 2023a)

Contents

Getting Started

1]

2|

Image Processing Toolbox Product Description 1-2
Key Features e e e e 1-2
Compilability 1-3
Basic Image Import, Processing, and Export 1-4
Correct Nonuniform Illumination and Analyze Foreground Objects 1-9
Acknowledgments 1-17
Introduction

Images in MATLAB i 2-2
Image Typesinthe Toolbox 2-3
BinaryImages i 2-4
Indexed IMages . . . oo vttt e e 2-4
Grayscale Imageso vttt e 2-5
Truecolor Images vttt e 2-6
HDRIMAgES . . . oot e e e e e e e e 2-6
Multispectral and Hyperspectral Images 2-7
Label Imagest 2-8
Convert BetweenImage Types, 2-9
Display Separated Color Channels of RGBImage 2-11
Convert Image Data Between DataTypes 2-14
Overview of Image Data Type Conversionsc....... 2-14
Losing Information in Conversionscvinuo... 2-14
Converting Indexed Imagesc.cviiiiiiin e, .. 2-14
Work with Image Sequences as Multidimensional Arrays 2-15
Create Multidimensional Array Representing Image Sequence 2-15
Display Image SEqQUENCES ottt 2-15
Process Image Sequencesoiiiintiini 2-16
Perform an Operation on a Sequence of Images 2-18

vi

Contents

Process Folder of Images Using Image Batch Processor App 2-20

Process Images Using Image Batch Processor App with File Metadata

... 2-27
Process Large Set of Images Using MapReduce Framework and Hadoop
... 2-35
Detecting Cars in a Videoof Traffic 2-44
Image Arithmetic Functions 2-50
Image Arithmetic Clipping Rules 2-51
Nest Calls to Image Arithmetic Functions 2-52
Find Vegetation in a Multispectral Image 2-53
Image Coordinate Systems 2-63
Pixel Indices 2-63
Spatial Coordinates 2-63
Define World Coordinate System of Image 2-66
Define Spatial Referencing Objects 2-66
Specify Minimum and Maximum Image Extent 2-67
Shift X- and Y-Coordinate Range of Displayed Image 2-69

Reading and Writing Image Data

3|

Read Image Data into the Workspace 3-2
Read Multiple Images from a Single Graphics File 3-4
Read and Write 1-Bit BinaryImages 3-5
Write Image Data to File in Graphics Format 3-6
DICOM Support in Image Processing Toolbox 3-7
Read and Display DICOM Image Data, 3-7
Work with DICOM Metadata 3-7
Write New DICOM Files i e 3-8
Work with DICOM-RT ContourData 3-8
Prepare DICOM Files for Deep Learning Workflows 3-8
Read Metadata from DICOM Files 3-10
Private DICOM Metadata 3-10
Create Your Own Copy of DICOM Dictionary 3-11

Read Image Data from DICOM Files 3-12

View DICOM Imagesot et et e e e 3-12
Write Image Datato DICOM Files 3-14
Include Metadata withImageData 3-14
Specify Value Representation 3-14
Remove Confidential Information from DICOM File 3-16
Create New DICOM Seriesuuiuinnnn. 3-20
Create Image Datastore Containing DICOM Images 3-24
Create Image Datastore Containing Single and Multi-File DICOM
Volumes 3-26
Add and Modify ROIs of DICOM-RT ContourData 3-29
Create and Display 3-D Mask of DICOM-RT ContourData 3-33
Mayo Analyze 7.5 Files 3-39
Interfile Files 3-40
Implement Digital Camera Processing Pipeline 3-41
Work with High Dynamic Range Images 3-51
Read HDRImMaQeot e e 3-51
Display and Process HDRImageiiiuern.. 3-51
Create High Dynamic Range Image 3-52
Write High Dynamic Range ImagetoFile 3-52
Display High Dynamic Range Image 3-53

Displaying and Exploring Images

4

Image Display and Exploration Overview 4-2
Display an Image in Figure Window 4-4
OVEIVIEW . . . oo 4-4
Specifying the Initial Image Magnification 4-6
Controlling the Appearance of the Figure 4-6
Display Multiple Images i, 4-8
Display Multiple Images in Separate Figure Windows 4-8
Display Multiple Imagesina Montage 4-8
Display Images Individually in the Same Figure 4-9
Compare a PairofImages, 4-10
View and Edit Collection of Images in Folder or Datastore 4-12

viii

Contents

Get Started with Image Viewer App 4-18

OpenImage VIEWET APD . . oot i i e e e e 4-19
Navigate Image in Image Viewer App i, 4-20
Get Information aboutImage Data 4-22
Modify Image Datattt 4-24
Save and Export Results 4-25
Get Pixel Information in Image Viewer App 4-27
Determine Individual Pixel Values in Image Viewer 4-27
Determine Pixel Values in an Image Region 4-28
Determine Image Display Range in Image Viewer 4-32
Measure Distance Between Pixels in Image Viewer App 4-34
Determine Distance Between Pixels Using Distance Tool 4-34
Export Endpoint and Distance Data 4-35
Customize the Appearance of the Distance Tool 4-36
Adjust Image Contrast in Image Viewer App 4-37
Adjust Contrast and Brightness using Adjust Contrast Tool 4-37
Adjust Contrast and Brightness Using Window/Level Tool 4-39
Make Contrast Adjustments Permanent 4-39
Crop Image Using Image Viewer App 4-41
Explore 3-D Volumetric Data with Volume Viewer App 4-45
Explore 3-D Labeled Volumetric Data with Volume Viewer 4-59
Display Interior Labels by Clipping Volume Planes 4-65
Display Interior Labels by Adjusting Volume Overlay Properties 4-73
Display Large 3-D Images Using Blocked Volume Visualization 4-82
View Image Sequences in Video Viewer 4-87
Open Data in Video ViewWer App oot 4-87
Explore Image Sequence Using Playback Controls 4-87
Examine Frame More Closely 4-88
Specify Frame Rate 4-89
Specify Colormapcoii ittt 4-89
Get Information about an Image Sequence 4-90
Configure Video VIEWET ADPD . . . o oottt e e 4-90
Convert Multiframe Image to Movie 4-92
Display Different Image Types 4-93
Display Indexed Images 4-93
Display Grayscale Imagesttt 4-93
Display Binary Imageso it 4-95
Display TruecolorImageso ... 4-96
Add Color Bar to Displayed Grayscale Image 4-98
Print Images e 4-100
Graphics Object Properties That Impact Printing 4-100

Manage Display Preferences 4-101
Retrieve Toolbox Preferences, .. 4-101
Set Toolbox Preferences00 .. 4-101
Control Image Display Using Preferences and Name-Value Arguments . 4-101

Building GUIs with Modular Tools

d|

Interactive Image Viewing and Processing Tools 5-2
Interactive Tool Workflow 5-6
Display Target Image in Figure Window 5-6
Createthe Tool 5-6
Position TOOISo 5-7
Add Navigation Aidst e 5-8
Customize Tool Interactivity i 5-8
Add Scroll Panelto Figure 5-10
Get Handle to Target Image0.... 5-13
Create Pixel RegionTool 5-15
Build App to Display Pixel Information 5-19
Build App for Navigating Large Images 5-21
Build Image ComparisonTool 5-24
Create Angle Measurement Tool Using ROI Objects 5-28

Geometric Transformations

6/

Resize anImage i 6-2
Resize Image and Preserve AspectRatio 6-7
RotateanImage e 6-13
CropanImage e 6-15
Translate an Image Using imtranslate Function 6-17
2-D and 3-D Geometric Transformation Process Overview 6-20

Create Geometric Transformation Object 6-20

ix

X

Contents

Migrate Geometric Transformations to Premultiply Convention 6-25

About the Premultiply and Postmultiply Conventions 6-25
Create New Geometric Transformation Objects from Previous Geometric
Transformation Objects 6-25
Matrix Representation of Geometric Transformations 6-27
2-D Affine Transformations 6-27
2-D Projective Transformations 6-28
3-D Affine Transformationsc.uutnnnns 6-29
3-D Projective and N-D Transformations 6-31
Create Composite 2-D Affine Transformations 6-32
Specify Fill Values in Geometric Transformation Qutput 6-36
Perform Simple 2-D Translation Transformation 6-38
N-Dimensional Spatial Transformations 6-41
Register Two Images Using Spatial Referencing to Enhance Display ... 6-43
Create a Gallery of Transformed Images 6-48
Exploring a Conformal Mapping 6-63
Exploring Slices from a 3-Dimensional MRI DataSet 6-75
Padding and Shearing an Image Simultaneously 6-82

Image Registration

7

Approaches to RegisteringImages 7-2
The Registration Estimator App 7-2
Intensity-Based Automatic Image Registration 7-3
Control Point Registration 7-4
Automated Feature Detection and Matching 7-5

Register Images Using Registration Estimator App 7-6
Load Images, Spatial Referencing Information, and Initial
Transformation 7-14
Load Images from File or Workspace 7-14
Provide Spatial Referencing Information 7-15
Provide an Initial Geometric Transformation 7-16
Tune Registration Settings in Registration Estimator 7-17
Geometric Transformations Supported by Registration Estimator 7-17
Feature-Based Registration Settings 7-17
Intensity-Based Registration Settings 7-18
Nonrigid and Post-Processing Settings 7-18

Export Results from Registration Estimator App 7-20

Export Results to the Workspace 7-20
Generatea Function 7-20
Techniques Supported by Registration Estimator 7-22
Feature-Based Registration 7-22
Intensity-Based Registration 7-22
Nonrigid Registration 7-23
Intensity-Based Automatic Image Registration 7-24

Create an Optimizer and Metric for Intensity-Based Image Registration

... 7-26
Use Phase Correlation as Preprocessing Step in Registration 7-27
Register Multimodal MRIImages0uun... 7-32
Register Multimodal 3-D MedicalImages 7-42
Registering an Image Using Normalized Cross-Correlation 7-50
Control Point Registration 7-56
Geometric Transformation Types for Control Point Registration 7-58
Control Point Selection Procedure 7-60
Start the Control Point SelectionTool 7-62
Find Visual Elements Common to BothImages 7-64

Use Scroll Bars to View Other PartsofanImage 7-64
Use the Detail Rectangle to Change the View 7-64
Pan the Image Displayed in the Detail Window 7-64
ZoomInand OutonanImaget 7-64
Specify the Magnification of the Images 7-65
Lock the Relative Magnification of the Moving and Fixed Images 7-66
Select Matching Control Point Pairs 7-67
Pick Control Point Pairs Manually 7-67
Use Control Point Prediction, 7-68
Move Control Points 7-70
Delete Control Points 7-70
Export Control Points to the Workspace 7-72
Find Image Rotationand Scale 7-74
Use Cross-Correlation to Improve Control Point Placement 7-78
Register Images with Projection Distortion Using Control Points 7-79

xi

xii

Contents

Designing and Implementing Linear Filters for Image Data

8|

What Is Image Filtering in the Spatial Domain? 8-2
Convolution e 8-2
Correlation 8-3

Filter Grayscale and Truecolor (RGB) Images Using imfilter Function . . 8-5

imfilter Boundary Padding Options 8-9

Change Filter Strength Radially Qutward 8-12

Noise Removal 8-18
Remove Noise by Linear Filtering 8-18
Remove Noise Using an Averaging Filter and a Median Filter 8-18
Remove Noise By Adaptive Filtering 8-21

Apply Gaussian Smoothing FilterstoImages 8-24

Reduce Noise in Image Gradients 8-30

What is Guided Image Filtering? 8-39

Perform Flash/No-flash Denoising with Guided Filter 8-40

Segment Thermographic Image After Edge-Preserving Filtering 8-44

Integral Image e 8-48

Apply Multiple Filters to Integral Image 8-50

Filter Images Using Predefined Filter 8-55

Generate HDL Code for Image Sharpening 8-58

Adjust Image Intensity Values to Specified Range 8-65

Gamma Correction 8-67
Specify Gamma when Adjusting Contrast 8-67

Contrast Enhancement Techniques 8-69

Specify Contrast Adjustment Limits 8-73
Specify Contrast Adjustment Limitsas Range 8-73
Set Image Intensity Adjustment Limits Automatically 8-74

Adjust Image Contrast Using Histogram Equalization 8-75

Adaptive Histogram Equalization 8-80
Adjust Contrast using Adaptive Histogram Equalization 8-80

Enhance Color Separation Using Decorrelation Stretching 8-83

Simple Decorrelation Stretching 8-83
Linear Contrast Stretching 8-87
Decorrelation Stretch with Linear Contrast Stretch 8-87
Enhance Multispectral Color Composite Images 8-90
Low-Light Image Enhancement 8-100
Design Linear Filters in the Frequency Domain 8-107
Two-Dimensional Finite Impulse Response (FIR) Filters 8-107
Create 2-D Filter Using Frequency Transformation of 1-D Filter 8-107
Create Filter Using Frequency Sampling Method 8-109
Windowing Method 8-111
Creating the Desired Frequency Response Matrix 8-112
Computing the Frequency Response ofa Filter 8-113

9

Image Deblurring 9-2
Deblurring Functions 9-3
Deblur Images Using a Wiener Filter 9-5
Deblur Images Using Regularized Filter 9-12
Adapt the Lucy-Richardson Deconvolution for Various Image Distortions
... 9-22
Reduce the Effect of Noise Amplification 9-22
Account for Nonuniform Image Quality 9-22
Handle Camera Read-Out Noise 9-23
Handling Undersampled Imagescooiiiiiineennnn.. 9-23
Refinethe Result i 9-23
Deblurring Images Using the Lucy-Richardson Algorithm 9-25
Adapt Blind Deconvolution for Various Image Distortions 9-37
Deblur images using blind deconvolution 9-37
Refiningthe Result i 9-44
Deblurring Images Using the Blind Deconvolution Algorithm 9-45
Create Your Own Deblurring Functions 9-53
Avoid Ringing in Deblurred Images 9-54

xiii

xiv

Contents

Transforms

10|

Fourier Transform 10-2
Definition of Fourier Transform 10-2
Discrete Fourier Transformt 10-5
Applications of the Fourier Transform 10-8

Discrete Cosine Transform, 10-12
DCT Definition 10-12
The DCT Transform Matrix 10-13
Image Compression with the Discrete Cosine Transform 10-13

Hough Transform 10-16
Detect Lines in Images Using Hough 10-16

Radon Transform 10-21
Plot the Radon Transform ofanImage 10-23

Detect Lines Using Radon Transform 10-27

The Inverse Radon Transformation 10-32
Inverse Radon Transform Definition 10-32
Reconstruct an Image from Parallel Projection Data 10-34

Fan-Beam Projection 10-37
Image Reconstruction from Fan-Beam Projection Data 10-39
Reconstruct Image using Inverse Fanbeam Projection 10-40

Reconstructing an Image from ProjectionData 10-44

Morphological Operations

11|

Types of Morphological Operations 11-2
Morphological Dilation and Erosion 11-2
Operations Based on Dilation and Erosion 11-4

Structuring Elements 11-9
Determine the Origin of a Structuring Element 11-10
Structuring Element Decomposition 11-11

Border Padding for Morphology 11-13

Morphological Reconstruction 11-14
Marker Image and MaskImage 11-15
Influence of Pixel Connectivity 11-18
Applications of Morphological Reconstruction 11-20

Find Image Peaksand Valleys 11-21
Global and Regional Minima and Maxima 11-21

Find Areas of High or Low Intensity 11-21

Suppress Minima and Maximacoiiiiiiinn.... 11-23
Impose a Minimum ittt 11-24
Pixel Connectivity 11-27
Choosing a Connectivity 11-28
Specifying Custom Connectivities 11-28
Lookup Table Operations 11-30
Creatinga LookupTable 11-30
Usinga Lookup Table i, 11-30
Dilate an Image to Enlargea Shape 11-32
Remove Thin Lines Using Erosion 11-36
Use Morphological Opening to Extract Large Image Features 11-38
Flood-Fill Operations 11-42
Specifying Connectivity 11-42
Specifying the Starting Point 11-42
Filling Holes i e 11-43
Detect Cell Using Edge Detection and Morphology 11-45
Granulometry of Snowflakes 11-50
Distance Transform of a BinaryImage 11-55
Label and Measure Connected Components in a Binary Image 11-57
Detect Connected Components i, 11-57
Label Connected Componentsc. i, 11-58
Select Objects ina BinaryImage 11-59
Measure Properties of Connected Components 11-59

Image Segmentation

12

Color-Based Segmentation Using the L*a*b* Color Space 12-2
Color-Based Segmentation Using K-Means Clustering 12-8
Plot Land Classification with Color Features and Superpixels 12-14
Compute 3-D Superpixels of Input Volumetric Intensity Image 12-17
Segment Lungs from 3-D Chest Scan 12-20
Marker-Controlled Watershed Segmentation 12-28
Segment Image and Create Mask Using Color Thresholder 12-44

xvi

Contents

Acquire Live Images in Color Thresholder
Getting Started with Image Segmenter
Open Image Segmenter Appand Load Data
Create and Add Regions to Segmented Mask
Refine Segmented Mask i
Export Segmentation Results
Segment Image Using Thresholding in Image Segmenter
Segment Image by Drawing Regions Using Image Segmenter
Segment Image Using Active Contours in Image Segmenter
Refine Segmentation Using Morphology in Image Segmenter

Segment Image Using Graph Cut in Image Segmenter

Segment Image Using Local Graph Cut (Grabcut) in Image Segmenter

Segment Image Using Find Circles in Image Segmenter

Segment Image Using Auto Cluster in Image Segmenter
Create Binary Mask Using Volume Segmenter
Create Semantic Segmentation Using Volume Segmenter

Work with Blocked Images Using Volume Segmenter
Install Sample Data Using Add-On Explorer
Texture Segmentation Using Gabor Filters

Texture Segmentation Using Texture Filters

12-56
12-60
12-60
12-60
12-61
12-62
12-63
12-69
12-75
12-81

12-86

12-95

12-103

12-110

12-116

12-128

12-141

13

Pixel Values
Determine Values of Individual Pixels in Images

Intensity Profile of Images
Create an Intensity Profile ofanImage
Create Intensity Profile of an RGBImage

Contour Plotof Image Data
Create Contour Plot of Image Data

Measuring Regions in Grayscale Images

Find the Length of a Pendulum in Motion 13-15

Create Image Histogram 13-20
Image Mean, Standard Deviation, and Correlation Coefficient 13-22
Edge Detection e 13-23

Detect EdgesinImages, 13-23
Boundary TracinginImages 13-26

Trace Boundaries of ObjectsinImages 13-26

Select First Step and Direction for Tracing 13-29
Quadtree Decompeosition 13-31

Perform Quadtree DecompositiononanImage 13-31
Detect and Measure Circular ObjectsinanImage 13-34
Identifying Round Objects 13-46
Measuring Angle of Intersection 13-54
Measuring the Radiusof aRollof Tape 13-60
Calculate Statistical Measures of Texture 13-63

Texture Analysis Using the Gray-Level Co-Occurrence Matrix (GLCM)

.. 13-65
Create a Gray-Level Co-Occurrence Matrix 13-66
Specify Offset Used in GLCM Calculation 13-68
Derive Statistics from GLCM and Plot Correlation 13-69

14

Image Quality Metrics i 14-2
Full-Reference Quality Metrics 0., 14-2
No-Reference Quality Metrics 14-3

Train and Use No-Reference Quality Assessment Model 14-4
NIQE Workflow 14-4
BRISQUE Workflow i 14-6

Compare No Reference Image Quality Metrics 14-8

Obtain Local Structural SimilarityIndex 14-15

Compare Image Quality at Various Compression Levels 14-17

xvii

xviii

Anatomy of the Imatest Extended eSFR Chart 14-19

Slanted Edge Features, 14-19
Gray Patch Features, 14-20
Color Patch Features 14-21
Registration Markers e 14-21
Evaluate Quality Metrics on eSFRTest Chart 14-23
Correct Colors Using Color Correction Matrix 14-35

ROI-Based Processing

15

Contents

Specify ROl as BinaryMask 15-2
Create Mask Using Thresholding 15-2
Create Mask Based on Position 15-4
Create Mask Using Automated and Semi-Automated Segmentation

Algorithms e 15-5

Create ROI Shapes 15-7
Create ROI Using Creation Convenience Functions 15-10
Create ROI Using draw Function 15-12
Using ROIs in Apps Created with App Designer 15-16

ROI Migration 15-18
ROI Object Migrationt 15-18
ROI Object Function Migration 15-18
ROLEVENES . . o e e e e e e e e e e 15-20

Create Binary Mask Using an ROI Function 15-21

Overview of ROI Filtering 15-24

Sharpen Region of InterestinanImage 15-25

Apply Custom Filter to Region of Interestin Image 15-28

Fill Region of InterestinanImage 15-31

Calculate Properties of Image Regions Using Image Region Analyzer

.. 15-33
Filter Images on Properties Using Image Region Analyzer App 15-38
Create Image Comparison Tool Using ROIs 15-43
Use Freehand ROIs to Refine Segmentation Masks 15-50
Rotate Image Interactively Using Rectangle ROI 15-55
Subsample or Simplify a Freehand ROI 15-61

Measure DistancesinanImage 15-71

16|

Use Polyline to Create Angle Measurement Tool 15-78
Create Freehand ROI Editing Tool 15-82
Use Wait Function After Drawing ROI 15-88
Interactive Image Inpainting Using Exemplar Matching 15-91
Classify Pixels That Are Partially Enclosed by ROI 15-95
Color

Display Colors e 16-2
Reduce the Number of ColorsinanImage 16-3
Reduce Colors of Truecolor Image Using Color Approximation 16-3
Reduce Colors of Indexed Image Using imapprox 16-7
Reduce Colors Using Dithering 16-7
Profile-Based Color Space Conversions 16-10
Read ICCProfileso v e 16-10
Write ICC Profile Informationtoa File 16-10
Convert RGB to CMYK Using ICC Profiles 16-11
What is Rendering Intent in Profile-Based Conversions? 16-12
Device-Independent Color Spaces 16-13
Convert Between Device-Independent Color Spaces 16-13
Color Space Data Encodings, 16-13
Understanding Color Spaces and Color Space Conversion 16-15
RGB . e 16-15

HSV 16-16

CIE 1976 XYZ and CIE 1976 L*a*b* 16-17
YCBCT . .o 16-18

Y0 o 16-19
Convert Between RGB and HSV Color Spaces 16-20
Determine If L*a*b* Value Isin RGBGamut 16-24
Comparison of Auto White Balance Algorithms 16-25
Calculate CIE94 Color Difference of Colors on Test Chart 16-42

Xix

XX

Contents

Blocked Image Processing

17|

Set Up Spatial Referencing for Blocked Images 17-2
Process Blocked Images Efficiently Using Partial Images or Lower

Resolutions 17-13
Process Blocked Images Efficiently UsingMask 17-22
Explore Blocked Image Details with Interactive ROIs 17-34
Warp Blocked Image at Coarse and Fine Resolution Levels 17-42
Create Labeled Blocked Image from ROIs and Masks 17-47
Convert Image Labeler Polygons to Labeled Blocked Image for Semantic

Segmentation 17-57
Read Whole-Slide Images with Custom Blocked Image Adapter 17-62
Detect and Count Cell Nuclei in Whole Slide Images 17-69

Neighborhood and Block Operations

18|

Neighborhood or Block Processing: An Overview 18-2
Sliding Neighborhood Operations 18-3
Determine the Center Pixel 18-3
General Algorithm of Sliding Neighborhood Operations 18-4
Border Padding Behavior in Sliding Neighborhood Operations 18-4
Implementing Linear and Nonlinear Filtering as Sliding Neighborhood
Operations i 18-4
Distinct Block Processing 18-6
Implement Block Processing Using the blockproc Function 18-6
Apply Padding 18-7
Block Size and Performance, 18-9
TIFF Image Characteristics 18-9
Choose Block Size to Optimize blockproc Performance 18-9
Parallel Block Processing on Large Image Files 18-13
What is Parallel Block Processing? 18-13
When to Use Parallel Block Processing 18-13
How to Use Parallel Block Processing 18-13
Perform Block Processing on Image Files in Unsupported Formats ... 18-15
Learning More About the LAN File Format 18-15
Parsingthe Header i, 18-15

Readingthe File i e 18-16

Examining the LanAdapter Class ui.. 18-17
Using the LanAdapter Class with blockproc 18-20

Use Column-wise Processing to Speed Up Sliding Neighborhood or
Distinct Block Operations 18-21
Using Column Processing with Sliding Neighborhood Operations 18-21
Using Column Processing with Distinct Block Operations 18-22
Block Processing Large Images 18-24
Compute Statistics for Large Images 18-29

Deep Learning

19]

Get Started with Image Preprocessing and Augmentation for Deep

Learning e 19-2
Preprocess Images for Deep Learning 19-5
Resize Images Using Rescaling and Cropping 19-5
Augment Images for Training with Random Geometric Transformations
... 19-6
Perform Additional Image Processing Operations Using Built-In Datastores
... 19-7
Apply Custom Image Processing Pipelines Using Combine and Transform
... 19-7
Preprocess Volumes for Deep Learning 19-9
Read VolumetricDatao, 19-9
PairImageand Label Data i, 19-10
Preprocess VolumetricData 19-10
Exampleso 19-11
Augment Images for Deep Learning Workflows 19-16
Get Started with GANs for Image-to-Image Translation 19-38
Select a GAN 19-38
Create GAN Networkso i e 19-38
Train GAN Network o e 19-40
Create Modular Neural Networks 19-43
Create Encoder and Decoder Modules 19-43
Create Networks from Encoder and Decoder Modules 19-44
Train and Apply Denoising Neural Networks 19-45
Remove Gaussian Noise Using Pretrained Network 19-45
Train a Denoising Network Using Built-In Layers 19-45
Train Fully Customized Denoising Neural Network 19-46
Remove Noise from Color Image Using Pretrained Neural Network . . 19-48

xxi

xxii

Increase Image Resolution Using Deep Learning 19-54

JPEG Image Deblocking Using Deep Learning 19-70
Image Processing Operator Approximation Using Deep Learning 19-83
Develop Camera Processing Pipeline Using Deep Learning 19-97
Brighten Extremely Dark Images Using Deep Learning 19-119
Semantic Segmentation of Multispectral Images Using Deep Learning

... 19-130
3-D Brain Tumor Segmentation Using Deep Learning 19-148
Neural Style Transfer Using Deep Learning 19-158
Unsupervised Day-to-Dusk Image Translation Using UNIT 19-167
Quantify Image Quality Using Neural Image Assessment 19-178
Unsupervised Medical Image Denoising Using CycleGAN 19-191
Unsupervised Medical Image Denoising Using UNIT 19-205
Preprocess Multiresolution Images for Training Classification Network

... 19-218
Classify Tumors in Multiresolution Blocked Images 19-234
Detect Image Anomalies Using Explainable FCDD Network 19-246
Classify Defects on Wafer Maps Using Deep Learning 19-259
Detect Image Anomalies Using Pretrained ResNet-18 Feature

Embeddings 19-275

Hyperspectral Image Processing

20

Contents

Getting Started with Hyperspectral Image Processing 20-2
Representing Hyperspectral Data 20-2
Preprocessing 20-3
Spectral Unmixing 0ot 20-5
Spectral Matching 20-6
Applications 20-7

Hyperspectral Data Correction 20-9
Radiometric Calibration 20-9
Atmospheric Correction 20-10

Spectral Indices 20-13

Band Definition 20-13
List of Supported Spectral Indices 20-15
Support for Singleton Dimensions 20-18
Identify Vegetation and Non-Vegetation Spectra 20-20
Explore Hyperspectral Data in the Hyperspectral Viewer 20-22
Hyperspectral Image Analysis Using Maximum Abundance Classification
.. 20-32
Classify Hyperspectral Image Using Library Signatures and SAM 20-39
Endmember Material Identification Using Spectral Library 20-45
Target Detection Using Spectral Signature Matching 20-52
Identify Vegetation Regions Using Interactive NDVI Thresholding ... 20-60
Classify Hyperspectral Images Using Deep Learning 20-65
Find Regions in Spatially Referenced Multispectral Image 20-71
Classify Hyperspectral Image Using Support Vector Machine Classifier
.. 20-77
Manually Label ROIs in Multispectral Image 20-83

Code Generation for Image Processing Toolbox Functions

21|

Code Generation for Image Processing 21-2
Types of Code Generation Support in Image Processing Toolbox 21-2
Generate Code with Image Processing Functions 21-3

Generate Code for Object Detection 21-5

Generate Code to Resize Images to Fixed Output Size 21-22

GPU Computing with Image Processing Toolbox Functions

22

Image Processingona GPU 22-2

Perform Thresholding and Morphological Operations on GPU 22-3

xxiii

xxiv

Contents

Perform Pixel-Based Operations on GPU

Getting Started

This topic presents two examples to get you started doing image processing using MATLAB® and the
Image Processing Toolbox software. The examples contain cross-references to other sections in the
documentation that have in-depth discussions on the concepts presented in the examples.

“Image Processing Toolbox Product Description” on page 1-2

“Compilability” on page 1-3

“Basic Image Import, Processing, and Export” on page 1-4

“Correct Nonuniform Illumination and Analyze Foreground Objects” on page 1-9
“Acknowledgments” on page 1-17

1 Getting Started

Image Processing Toolbox Product Description

1-2

Perform image processing, visualization, and analysis

Image Processing Toolbox provides a comprehensive set of reference-standard algorithms and
workflow apps for image processing, analysis, visualization, and algorithm development. You can
perform image segmentation, image enhancement, noise reduction, geometric transformations, and
image registration using deep learning and traditional image processing techniques. The toolbox
supports processing of 2D, 3D, and arbitrarily large images.

Image Processing Toolbox apps let you automate common image processing workflows. You can
interactively segment image data, compare image registration techniques, and batch-process large
datasets. Visualization functions and apps let you explore images, 3D volumes, and videos; adjust
contrast; create histograms; and manipulate regions of interest (ROIs).

You can accelerate your algorithms by running them on multicore processors and GPUs. Many
toolbox functions support C/C++ code generation for desktop prototyping and embedded vision
system deployment.

Key Features

* Image analysis, including segmentation, morphology, statistics, and measurement

* Apps for image region analysis, image batch processing, and image registration

+ 3D image processing workflows, including visualization and segmentation

* Image enhancement, filtering, geometric transformations, and deblurring algorithms

» Intensity-based and non-rigid image registration methods

* Support for CUDA enabled NVIDIA GPUs (with Parallel Computing Toolbox™)

* C-code generation support for desktop prototyping and embedded vision system deployment

Compilability

Compilability
The Image Processing Toolbox software is compilable with the MATLAB Compiler™ except for the

following functions that launch GUIs:

* cpselect
* implay
* imtool

1-3

1 Getting Started

Basic Image Import, Processing, and Export

1-4

This example shows how to read an image into the workspace, adjust the contrast in the image, and
then write the adjusted image to a file.

Step 1: Read and Display an Image

Read an image into the workspace, using the imread command. The example reads one of the
sample images included with the toolbox, an image of a young girl in a file named pout.tif , and
stores it in an array named I . imread infers from the file that the graphics file format is Tagged
Image File Format (TIFF).

I = imread('pout.tif');

Display the image, using the imshow function. You can also view an image in the Image Viewer app.
The imtool function opens the Image Viewer app which presents an integrated environment for
displaying images and performing some common image processing tasks. The Image Viewer app
provides all the image display capabilities of imshow but also provides access to several other tools
for navigating and exploring images, such as scroll bars, the Pixel Region tool, Image Information
tool, and the Contrast Adjustment tool.

imshow(I)

Step 2: Check How the Image Appears in the Workspace

Check how the imread function stores the image data in the workspace, using the whos command.
You can also check the variable in the Workspace Browser. The imread function returns the image
data in the variable I, which is a 291-by-240 element array of uint8 data.

Basic Image Import, Processing, and Export

whos I
Name Size Bytes (lass Attributes
I 291x240 69840 uint8

Step 3: Improve Image Contrast

View the distribution of image pixel intensities. The image pout.tif is a somewhat low contrast
image. To see the distribution of intensities in the image, create a histogram by calling the imhist
function. (Precede the call to imhist with the figure command so that the histogram does not
overwrite the display of the image I in the current figure window.) Notice how the histogram
indicates that the intensity range of the image is rather narrow. The range does not cover the
potential range of [0, 255], and is missing the high and low values that would result in good contrast.

figure
imhist(I)

1600

1400

1200

1000

800

600

400

200

a] 100 150 200 250

Improve the contrast in an image, using the histeq function. Histogram equalization spreads the
intensity values over the full range of the image. Display the image. (The toolbox includes several
other functions that perform contrast adjustment, including imadjust and adapthisteq, and
interactive tools such as the Adjust Contrast tool, available in the Image Viewer.)

I2 = histeq(I);

figure
imshow(I2)

1-5

1 Getting Started

Call the imhist function again to create a histogram of the equalized image I2 . If you compare the
two histograms, you can see that the histogram of I2 is more spread out over the entire range than
the histogram of I .

figure
imhist(I2)

1-6

Basic Image Import, Processing, and Export

1600

1400 + _

1200 T

1000

400 - -

200 - y

Step 4: Write the Adjusted Image to a Disk File

Write the newly adjusted image I2 to a disk file, using the imwrite function. This example includes
the filename extension '.png"' in the file name, so the imwrite function writes the image to a file in
Portable Network Graphics (PNG) format, but you can specify other formats.

imwrite (I2, 'pout2.png');
Step 5: Check the Contents of the Newly Written File

View what imwrite wrote to the disk file, using the imfinfo function. The imfinfo function
returns information about the image in the file, such as its format, size, width, and height.

imfinfo('pout2.png"')

ans = struct with fields:
Filename: 'C:\TEMP\Bdoc23a 2213998 3568\ib570499\19\tpelca84al\images-ex895050
FileModDate: '03-Mar-2023 09:26:56'
FileSize: 36938
Format: 'png'
FormatVersion: []

Width: 240
Height: 291
BitDepth: 8

ColorType: 'grayscale'
FormatSignature: [137 80 78 71 13 10 26 10]

Colormap: []

Histogram: []

1-7

1 Getting Started

1-8

InterlaceType:
Transparency:
SimpleTransparencyData:
BackgroundColor:
RenderingIntent:
Chromaticities:
Gamma:
XResolution:
YResolution:
ResolutionUnit:
X0ffset:
YOffset:
OffsetUnit:
SignificantBits:
ImageModTime:
Title:

Author:
Description:
Copyright:
CreationTime:
Software:
Disclaimer:
Warning:

Source:

Comment:
OtherText:

"none’
"none’

—
[a—

,_,,_,,_,,_,,_,,_,_,,_,,_,,_,,_,_,_,,_,,_,,_,,_,,_,_,_,,_,,_,,_,
et et et et e e e e et et et () e e e e b b el e e e

Mar 2023 14:26:56 +0000'

Correct Nonuniform lllumination and Analyze Foreground Objects

Correct Nonuniform lllumination and Analyze Foreground
Objects

This example shows how to enhance an image as a preprocessing step before analysis. In this
example, you correct the nonuniform background illumination and convert the image into a binary
image to make it easy to identify foreground objects (individual grains of rice). You can then analyze
the objects, such as finding the area of each grain of rice, and you can compute statistics for all
objects in the image.

Preprocess the Image

Read an image into the workspace.

I = imread('rice.png');
imshow(I)

The background illumination is brighter in the center of the image than at the bottom. Preprocess the
image to make the background illumination more uniform.

As a first step, remove all of the foreground (rice grains) using morphological opening. The opening
operation removes small objects that cannot completely contain the structuring element. Define a
disk-shaped structuring element with a radius of 15, which fits entirely inside a single grain of rice.

se = strel('disk',15)

se =
strel is a disk shaped structuring element with properties:

Neighborhood: [29%x29 logical]
Dimensionality: 2

1-9

1 Getting Started

To perform the morphological opening, use imopen with the structuring element.

background = imopen(I,se);
imshow(background)

Subtract the background approximation image, background, from the original image, I, and view
the resulting image. After subtracting the adjusted background image from the original image, the
resulting image has a uniform background but is now a bit dark for analysis.

I2 = I - background;
imshow(I2)

1-10

Correct Nonuniform lllumination and Analyze Foreground Objects

Use imadjust to increase the contrast of the processed image I2 by saturating 1% of the data at
both low and high intensities and by stretching the intensity values to fill the uint8 dynamic range.

I3 = imadjust(I2);
imshow(I3)

Note that the prior two steps could be replaced by a single step using imtophat which first
calculates the morphological opening and then subtracts it from the original image.

1-11

1 Getting Started

I2 = imtophat(I,strel('disk',15));

Create a binary version of the processed image so you can use toolbox functions for analysis. Use the
imbinarize function to convert the grayscale image into a binary image. Remove background noise
from the image with the bwareaopen function.

bw imbinarize(I3);
bw = bwareaopen(bw,50);
imshow(bw)

Identify Objects in the Image

Now that you have created a binary version of the original image you can perform analysis of objects
in the image.

Find all the connected components (objects) in the binary image. The accuracy of your results
depends on the size of the objects, the connectivity parameter (4, 8, or arbitrary), and whether or not
any objects are touching (in which case they could be labeled as one object). Some of the rice grains
in the binary image bw are touching.

cc = bwconncomp(bw,4)

struct with fields:
Connectivity: 4
ImageSize: [256 256]
NumObjects: 95
PixelIdxList: {1x95 cell}

ccC

cc.NumObjects

ans = 95

View the rice grain that is labeled 50 in the image.

1-12

Correct Nonuniform lllumination and Analyze Foreground Objects

grain = false(size(bw));
grain(cc.PixelIdxList{50}) = true;
imshow(grain)

Visualize all the connected components in the image by creating a label matrix and then displaying it
as a pseudocolor indexed image.

Use labelmatrix to create a label matrix from the output of bwconncomp. Note that Llabelmatrix
stores the label matrix in the smallest numeric class necessary for the number of objects.

labeled = labelmatrix(cc);
whos labeled

Name Size Bytes C(lass Attributes
labeled 256x256 65536 uint8

Use label2rgb to choose the colormap, the background color, and how objects in the label matrix
map to colors in the colormap. In the pseudocolor image, the label identifying each object in the label
matrix maps to a different color in an associated colormap matrix.

RGB_label = label2rgb(labeled, 'spring','c', 'shuffle');
imshow(RGB_label)

1-13

1 Getting Started

Compute Area-Based Statistics

Compute the area of each object in the image using regionprops. Each rice grain is one connected
component in the cc structure.

graindata = regionprops(cc, 'basic')
graindata=95x1 struct array with fields:
Area

Centroid
BoundingBox

Create a new vector grain_areas, which holds the area measurement for each grain.
grain areas = [graindata.Areal;

Find the area of the 50th component.

grain_areas(50)

ans = 194

Find and display the grain with the smallest area.

[min area, idx] = min(grain_areas)

min area = 61

idx = 16

grain = false(size(bw));

grain(cc.PixelIdxList{idx}) = true;
imshow(grain)

1-14

Correct Nonuniform lllumination and Analyze Foreground Objects

Use the histogram command to create a histogram of rice grain areas.

histogram(grain_areas)
title('Histogram of Rice Grain Area')

1-15

1 Getting Started

45 Histogram of Rice Grain Area

35

25t

18T
10+

0 P SN v s B
50 100 150 200 250 300 350 400

See Also
imopen | bwareaopen | bwconncomp | regionprops | imadjust | imbinarize | label2rgb |
labelmatrix | imread | imshow

1-16

Acknowledgments

Acknowledgments

This table lists the copyright owners of the images used in the Image Processing Toolbox

documentation.

Image Source

cameraman Copyright Massachusetts Institute of Technology. Used with
permission.

cell Cancer cell from a rat's prostate, courtesy of Alan W. Partin,
M.D., Ph.D., Johns Hopkins University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit, courtesy of Steve

Decker and Shujaat Nadeem, MIT, 1993.

concordaerial and
westconcordaerial

Visible color aerial photographs courtesy of mPower3/Emerge.

concordorthophoto and
westconcordorthophoto

Orthoregistered photographs courtesy of Massachusetts
Executive Office of Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest, British Columbia,
Canada, courtesy of Susan Cohen.

LAN files Permission to use Landsat data sets provided by Space Imaging,
LLC, Denver, Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy of NASA (Image
number E-10962).

m83 M@83 spiral galaxy astronomical image courtesy of Anglo-
Australian Observatory, photography by David Malin.

moon Copyright Michael Myers. Used with permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog #PIA01364.

solarspectra Courtesy of Ann Walker. Used with permission.

tissue Courtesy of Alan W. Partin, M.D., PhD., Johns Hopkins University
School of Medicine.

trees Trees with a View, watercolor and ink on paper, copyright Susan
Cohen. Used with permission.

pavial University of Pavia hyperspectral data set, courtesy of Paolo

Gamba, PhD., Remote Sensing Group at the University of Pavia.
Used with permission.

1-17

Introduction

This chapter introduces you to the fundamentals of image processing using MATLAB and the Image
Processing Toolbox software.

“Images in MATLAB” on page 2-2

“Image Types in the Toolbox” on page 2-3

“Convert Between Image Types” on page 2-9

“Display Separated Color Channels of RGB Image” on page 2-11

“Convert Image Data Between Data Types” on page 2-14

“Work with Image Sequences as Multidimensional Arrays” on page 2-15

“Perform an Operation on a Sequence of Images” on page 2-18

“Process Folder of Images Using Image Batch Processor App” on page 2-20

“Process Images Using Image Batch Processor App with File Metadata” on page 2-27
“Process Large Set of Images Using MapReduce Framework and Hadoop” on page 2-35
“Detecting Cars in a Video of Traffic” on page 2-44

“Image Arithmetic Functions” on page 2-50

“Image Arithmetic Clipping Rules” on page 2-51

“Nest Calls to Image Arithmetic Functions” on page 2-52

“Find Vegetation in a Multispectral Image” on page 2-53

“Image Coordinate Systems” on page 2-63

“Define World Coordinate System of Image” on page 2-66

“Shift X- and Y-Coordinate Range of Displayed Image” on page 2-69

2

Introduction

Images in MATLAB

2-2

The basic data structure in MATLAB is the array, an ordered set of real or complex elements. This
object is naturally suited to the representation of images, real-valued ordered sets of color or
intensity data.

MATLAB stores most images as two-dimensional matrices, in which each element of the matrix
corresponds to a single discrete pixel in the displayed image. (Pixel is derived from picture element
and usually denotes a single dot on a computer display.) For example, an image composed of 200
rows and 300 columns of different colored dots would be stored in MATLAB as a 200-by-300 matrix.

Some images, such as truecolor images, represent images using a three-dimensional array. In
truecolor images, the first plane in the third dimension represents the red pixel intensities, the
second plane represents the green pixel intensities, and the third plane represents the blue pixel
intensities. This convention makes working with images in MATLAB similar to working with any other
type of numeric data, and makes the full power of MATLAB available for image processing
applications.

For more information on how Image Processing Toolbox assigns pixel indices and how to relate pixel
indices to continuous spatial coordinates, see “Image Coordinate Systems” on page 2-63.

See Also
imread | imshow

Related Examples

. “Basic Image Import, Processing, and Export” on page 1-4

More About
. “Image Types in the Toolbox” on page 2-3

Image Types in the Toolbox

Image Types in the Toolbox

The Image Processing Toolbox software defines several fundamental types of images, summarized in
the table. These image types determine the way MATLAB interprets array elements as pixel intensity

values.

All images in Image Processing Toolbox are assumed to have nonsparse values. Numeric and logical
images are expected to be real-valued unless otherwise specified.

Image Type

Interpretation

“Binary Images” on page 2-
4

Image data are stored as an m-by-n logical matrix in which values of 0
and 1 are interpreted as black and white, respectively. Some toolbox
functions can also interpret an m-by-n numeric matrix as a binary
image, where values of 0 are black and all nonzero values are white.

“Indexed Images” on page 2-
4

Image data are stored as an m-by-n numeric matrix whose elements
are direct indices into a colormap. Each row of the colormap specifies
the red, green, and blue components of a single color.

* For single or double arrays, integer values range from [1, p].
* For logical, uint8, or uint16 arrays, values range from [0, p-1].

The colormap is a c-by-3 array of data type double with values in the
range [0, 1].

“Grayscale Images” on page
2-5

(Also known as intensity
images)

Image data are stored as an m-by-n numeric matrix whose elements
specify intensity values. The smallest value indicates black and the
largest value indicates white.

* For single or double arrays, values range from [0, 1].
* For uint8 arrays, values range from [0, 255].

* For uint16, values range from [0, 65535].
* For int16, values range from [-32768, 32767].

“Truecolor Images” on page
2-6

(Commonly referred to as
RGB images)

Image data are stored as an m-by-n-by-3 numeric array whose
elements specify the intensity values of one of the three color
channels. For RGB images, the three channels represent the red,
green, and blue signals of the image.

* For single or double arrays, RGB values range from [0, 1].
» For uint8 arrays, RGB values range from [0, 255].
* For uint16, RGB values range from [0, 65535].

There are other models, called color spaces, that describe colors using
three color channels. For these color spaces, the range of each data
type may differ from the range allowed by images in the RGB color
space. For example, pixel values in the L*a*b* color space of data type
doub'le can be negative or greater than 1. For more information, see
“Understanding Color Spaces and Color Space Conversion” on page
16-15.

2-3

2

Introduction

2-4

Image Type Interpretation
High Dynamic Range (HDR) |HDR images are stored as an m-by-n numeric matrix or m-by-n-by-3
Images on page 2-6 numeric array, similar to grayscale or RGB images, respectively. HDR

images have data type single or double but data values are not
limited to the range [0, 1] and can contain Inf values. For more
information, see “Work with High Dynamic Range Images” on page 3-

51.
Multispectral and Image data are stored as an m-by-n-by-c numeric array, where c is the
Hyperspectral Images on number of color channels.
page 2-7
Label Images on page 2-8 Image data are stored as an m-by-n categorical matrix or numeric

matrix of nonnegative integers.

Binary Images

In a binary image, each pixel has one of only two discrete values: 1 or 0. Most functions in the toolbox
interpret pixels with value 1 as belonging to a region of interest, and pixels with value 0 as the
background. Binary images are frequently used in conjunction with other image types to indicate
which portions of the image to process.

The figure shows a binary image with a close-up view of some of the pixel values.

NERERERER RN Y

el

I>—-|»—'»—'|—\»—'»—'
I
||

|

I Ll Ll

!

=l =]

Indexed Images

An indexed image consists of an image matrix and a colormap.

A colormap is a ¢-by-3 matrix of data type double with values in the range [0, 1]. Each row of the
colormap specifies the red, green, and blue components of a single color.

The pixel values in the image matrix are direct indices into the colormap. Therefore, the color of each
pixel in the indexed image is determined by mapping the pixel value in the image matrix to the
corresponding color in the colormap. The mapping depends on the data type of the image matrix:

» If the image matrix is of data type single or double, the colormap normally contains integer
values in the range [1, p], where p is the length of the colormap. The value 1 points to the first row
in the colormap, the value 2 points to the second row, and so on.

+ If the image matrix is of data type logical, uint8 or uint16, the colormap normally contains
integer values in the range [0, p-1]. The value 0 points to the first row in the colormap, the value 1
points to the second row, and so on.

Image Types in the Toolbox

A colormap is often stored with an indexed image and is automatically loaded with the image when
you use the imread function. After you read the image and the colormap into the workspace as
separate variables, you must keep track of the association between the image and colormap.
However, you are not limited to using the default colormap—you can use any colormap that you
choose.

The figure illustrates an indexed image, the image matrix, and the colormap, respectively. The image
matrix is of data type double, so the value 7 points to the seventh row of the colormap.

Grayscale Images

A grayscale image is a data matrix whose values represent intensities of one image pixel. While
grayscale images are rarely saved with a colormap, MATLAB uses a colormap to display them.

You can obtain a grayscale image directly from a camera that acquires a single signal for each pixel.
You can also convert truecolor or multispectral images to grayscale to emphasize one particular
aspect of the images. For example, you can take a linear combination of the red, green, and blue
channels of an RGB image such that the resulting grayscale image indicates the brightness,
saturation, or hue of each pixel. You can process each channel of a truecolor or multispectral image
independently by splitting the channels into separate grayscale images.

The figure depicts a grayscale image of data type double whose pixel values are in the range [0, 1].

= 0.1216 0.1255 =
0.1176 0.117& 0.1137 0.1059
8 0.1020 0.1020 0.1058 0.1058
802 0.1480 0.0380 0.0902 0.0941 0.0
6235 0.5020 0.41%& 0.2941 0.1608 0.08
6941 0.6392 0.6431 0.6510 0.5294 0.35
7451 0. 7255 0.6667 0.6353 0.6510 0.63
5863 0.6824 0.TI3T 0.6863 0.6353 0.7
% 0.68784 0.7373 0.7373 0.7020
. 6980 0.7176 0.7176 0.7057
FTEDS 0.7218

2-5

2

Introduction

2-6

Truecolor Images

A truecolor image is an image in which each pixel has a color specified by three values. Graphics file
formats store truecolor images as 24-bit images, where three color channels are 8 bits each. This
yields a potential of 16 million colors. The precision with which a real-life image can be replicated has
led to the commonly used term truecolor image.

RGB images are the most common type of truecolor images. In RGB images, the three color channels
are red, green, and blue. For more information about the RGB color channels, see “Display Separated
Color Channels of RGB Image” on page 2-11.

There are other models, called color spaces, that describe colors using three different color channels.
For these color spaces, the range of each data type may differ from the range allowed by images in
the RGB color space. For example, pixel values in the L*a*b* color space of data type double can be
negative or greater than 1. For more information, see “Understanding Color Spaces and Color Space
Conversion” on page 16-15.

Truecolor images do not use a colormap. The color of each pixel is determined by the combination of
the intensities stored in each color channel at the pixel's location.

The figure depicts the red, green, and blue channels of a floating-point RGB image. Observe that pixel
values are in the range [0, 1].

0.1333 0.1451
0.1882 0.2118

Q.
LIS
Q.
0.
0.7
0.
Q.
1.
1k

To determine the color of the pixel at (row, column) coordinate (2,3), you would look at the RGB
triplet stored in the vector (2,3,:). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

HDR Images

Dynamic range refers to the range of brightness levels. The dynamic range of real-world scenes can
be quite high. High dynamic range (HDR) images attempt to capture the whole tonal range of real-
world scenes (called scene-referred), using 32-bit floating-point values to store each color channel.

The figure depicts the red, green, and blue channels of a tone-mapped HDR image with original pixel
values in the range [0, 3.2813]. Tone mapping is a process that reduces the dynamic range of an HDR
image to the range expected by a computer monitor or screen.

Image Types in the Toolbox

2.7188 2.453]1
2.8281 2.4375 1.853
4 1.8672

Q. 0
0 Q. 0
0 0. Q
1 1. a
1 a5 1
ik & 1
0 i BE 0
9] Q. a
9] Q. 0

0. 0

Q. 4]

Multispectral and Hyperspectral Images

A multispectral image is a type of color image that stores more than three channels. For example, a
multispectral image can store three RGB color channels and three infrared channels, for a total of six
channels. The number of channels in a multispectral image is usually small. In contrast, a
hyperspectral image can store dozens or even hundreds of channels.

The figure depicts a multispectral image with six channels consisting of red, green, blue color
channels (depicted as a single RGB image) and three infrared channels.

Infrared Channel 1

Infrared Channel 2

Infrared Channel 3

RGB Image
(3 Color Channels)

2-7

2 Introduction

Label Images

A label image is an image in which each pixel specifies a class, object, or region of interest (ROI). You
can derive a label image from an image of a scene using segmentation techniques.

* A numeric label image enumerates objects or ROIs in the scene. Labels are nonnegative integers.
The background typically has the value 0. The pixels labeled 1 make up one object; the pixels
labeled 2 make up a second object; and so on.

* A categorical label image specifies the class of each pixel in the image. The background is
commonly assigned the value <undefined>.

The figure depicts a label image with three categories: petal, leaf, and dirt.

petal

petal petal petal petal
petal petal petal petal petal
<undefined> petal petal petal petal

leaf leaf petal petal petal petal
leaf
leaf

leaf

See Also

More About

. “Convert Between Image Types” on page 2-9

. “Understanding Color Spaces and Color Space Conversion” on page 16-15
. “Work with Image Sequences as Multidimensional Arrays” on page 2-15

2-8

Convert Between Image Types

Convert Between Image Types

The toolbox includes many functions that you can use to convert an image from one type to another,
listed in the following table. For example, if you want to filter a color image that is stored as an
indexed image, you must first convert it to truecolor format. When you apply the filter to the
truecolor image, MATLAB filters the intensity values in the image, as is appropriate. If you attempt to
filter the indexed image, MATLAB simply applies the filter to the indices in the indexed image matrix,
and the results might not be meaningful.

You can perform certain conversions just using MATLAB syntax. For example, you can convert a
grayscale image to truecolor format by concatenating three copies of the original matrix along the
third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and blue planes, so the image
displays as shades of gray.

In addition to these image type conversion functions, there are other functions that return a different
image type as part of the operation they perform. For example, the region of interest functions return
a binary image that you can use to mask an image for filtering or for other operations.

Note When you convert an image from one format to another, the resulting image might look
different from the original. For example, if you convert a color indexed image to a grayscale image,
the resulting image displays as shades of grays, not color.

Function Description

demosaic Convert a Bayer pattern encoded image to a truecolor (RGB) image.

dither Use dithering to convert a grayscale image to a binary image or to convert a
truecolor image to an indexed image.

gray2ind Convert a grayscale image to an indexed image.

grayslice Convert a grayscale image to an indexed image by using multilevel
thresholding.

im2gray Convert an RGB image to a grayscale image.

The im2gray function also accepts single-channel grayscale input images and
returns them unchanged. Use this function instead of rgb2gray when you
want a preprocessing algorithm to accept both grayscale and RGB images.

ind2gray Convert an indexed image to a grayscale image.
ind2rgb Convert an indexed image to a truecolor image.
mat2gray Convert a data matrix to a grayscale image, by scaling the data.
rgb2gray Convert a truecolor image to a grayscale image.

Unlike the im2rgb function, the rgb2gray function requires that the input
image have three color channels.

rgb2ind Convert a truecolor image to an indexed image.

2-9

2 Introduction

Some images use color spaces other than the RGB color space, such as the HSV color space. To work
with these images, first convert the image to the RGB color space, process the image, and then
convert it back to the original color space. For more information about color space conversion
routines, see “Understanding Color Spaces and Color Space Conversion” on page 16-15.

See Also

More About

. “Image Types in the Toolbox” on page 2-3
. “Read Image Data into the Workspace” on page 3-2

2-10

Display Separated Color Channels of RGB Image

Display Separated Color Channels of RGB Image

This example creates a simple RGB image and then separates the color channels. The example
displays each color channel as a grayscale intensity image and as a color image.

Create an RGB image with uninterrupted areas of red, green, and blue. Display the image.

imSize = 200;

RGB = reshape(ones(imSize,1l)*reshape(jet(imSize),1,imSize*3),[imSize,imSize,3]);
imshow(RGB)

title('Original RGB Image')

Original RGB Image

Separate the three color channels.
[R,G,B] = imsplit(RGB);

Display a grayscale representation of each color channel. Notice that each separated color plane in
the figure contains an area of white. The white corresponds to the highest values (purest shades) of
each separate color. For example, in the red channel image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue, gray pixels appear. The
black region in the image shows pixel values that contain no red values, in other words, when R ==
0.

figure
subplot(1,3,1)
imshow(R)

title('Red Channel')

subplot(1,3,2)
imshow(G)
title('Green Channel')

subplot(1,3,3)

imshow(B)
title('Blue Channel')

2-11

2 Introduction

Red Channel Green Channel Blue Channel

Display a color representation of each color channel. In these images, the desired color channel
maintains its original intensity values and pixel values in the other two color channels are set to 0.

Create an all-black channel.

allBlack = zeros(size(RGB,1,2),class(RGB));

justR = cat(3,R,allBlack,allBlack);
justG = cat(3,allBlack,G,allBlack);
justB = cat(3,allBlack,allBlack,B);

Display all the channels in a montage.

figure
montage({justR, justG, justB}, 'Size',[1 3],
"BackgroundColor", 'w',"BorderSize",10);
title('Color Representation of the Red, Green, and Blue Color Channels');

2-12

Display Separated Color Channels of RGB Image

Color Representation of the Red, Green, and Blue Color Channels

See Also
imsplit

More About
. “Image Types in the Toolbox” on page 2-3

2-13

2 Introduction

Convert Image Data Between Data Types

2-14

Overview of Image Data Type Conversions

You can convert uint8 and uint16 image data to double using the MATLAB double function.
However, converting between data types changes the way MATLAB and the toolbox interpret the
image data. If you want the resulting array to be interpreted properly as image data, you need to
rescale or offset the data when you convert it.

For easier conversion of data types, use one of these functions: im2uint8, im2uint16, im2int16,
im2single, or im2double. These functions automatically handle the rescaling and offsetting of the
original data of any image data type. For example, this command converts a double-precision RGB
image with data in the range [0,1] to a uint8 RGB image with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions

When you convert to a data type that uses fewer bits to represent numbers, you generally lose some
of the information in your image. For example, a uint16 grayscale image is capable of storing up to
65,536 distinct shades of gray, but a uint8 grayscale image can store only 256 distinct shades of
gray. When you convert a uint16 grayscale image to a uint8 grayscale image, im2uint8 quantizes
the gray shades in the original image. In other words, all values from 0 to 127 in the original image
become 0 in the uint8 image, values from 128 to 385 all become 1, and so on.

Converting Indexed Images

It is not always possible to convert an indexed image from one storage data type to another. In an
indexed image, the image matrix contains only indices into a colormap, rather than the color data
itself, so no quantization of the color data is possible during the conversion.

For example, a uint16 or double indexed image with 300 colors cannot be converted to uints,
because uint8 arrays have only 256 distinct values. If you want to perform this conversion, you must
first reduce the number of the colors in the image using the imapprox function. This function
performs the quantization on the colors in the colormap, to reduce the number of distinct colors in
the image. See “Reduce Colors of Indexed Image Using imapprox” on page 16-7 for more
information.

Work with Image Sequences as Multidimensional Arrays

Work with Image Sequences as Multidimensional Arrays

Create Multidimensional Array Representing Image Sequence

Multidimensional arrays are a convenient way to display and process image sequences. Create a
multidimensional array by concatenating the individual images of an image sequences. Each image
must be the same size and have the same number of color channels. If you are storing a sequence of
indexed images, each image must use the same colormap.

* Ifyou have a sequence of 2-D grayscale, binary, or indexed images, then concatenate the images
in the third dimension to create a 3-D array of size m-by-n-by-p. Each of the p images has size m-
by-n.

* Ifyou have a sequence of 2-D RGB images, then concatenate the images along the fourth
dimension to create a 4-D array of size m-by-n-by-3-by-p. Each of the p images has size m-by-n-
by-3.

The figure depicts 2-D images concatenated as planes of a 3-D array.

| - |moge p
|moge |maoge 2

Image 1

Use the cat function to concatenate individual images. For example, this code concatenates a group
of RGB images along the fourth dimension.

A = cat(4,A1,A2,A3,A4,A5)

Note Some functions work with a particular type of multidimensional array, call a multiframe array.
In a multiframe array, images are concatenated along the fourth dimension regardless of the number
of color channels that the images have. A multiframe array of grayscale, binary, or indexed images
has size m-by-n-by-1-by-p. If you need to convert a multiframe array of grayscale images to a 3-D
array for use with other toolbox functions, then you can use the squeeze function to remove the
singleton dimension.

Display Image Sequences

There are several ways to display image sequences. To display one frame at a time, use the Image
Viewer app or the imshow function. To display all the frames in an image sequence simultaneously,
use the montage function.

To animate an image sequence or provide navigation within the sequence, use the Video Viewer app.

The Video Viewer app provides playback controls that you can use to navigate among the frames in
the sequence.

2-15

2

Introduction

2-16

Process Image Sequences

Many toolbox functions can operate on multidimensional arrays and, consequently, can operate on
image sequences. For example, if you pass a multidimensional array to the imwarp function, it
applies the same 2-D transformation to all 2-D planes along the higher dimension.

Some toolbox functions that accept multidimensional arrays, however, do not by default interpret an
m-by-n-by-p or an m-by-n-by-3-by-p array as an image sequence. To use these functions with image
sequences, you must use particular syntax and be aware of other limitations. The table lists common

toolbox functions that support image sequences.

m-by-n-by-3-by-p

Function Image Sequence Guideline When Used with an Image
Dimensions Sequence
bwlabeln m-by-n-by-p only Must use the bwlabeln(BW, conn) syntax
with a 2-D connectivity.
deconvblind m-by-n-by-p or PSF argument can be either 1-D or 2-D.
m-by-n-by-3-by-p
deconvlucy m-by-n-by-p or PSF argument can be either 1-D or 2-D.
m-by-n-by-3-by-p
edgetaper m-by-n-by-p or PSF argument can be either 1-D or 2-D.
m-by-n-by-3-by-p
entropyfilt m-by-n-by-p only nhood argument must be 2-D.
imabsdiff m-by-n-by-p or Image sequences must be the same size.
m-by-n-by-3-by-p
imadd m-by-n-by-p or Image sequences must be the same size.
m-by-n-by-3-by-p Cannot add scalar to image sequence.
imbothat m-by-n-by-p only SE argument must be 2-D.
imclose m-by-n-by-p only SE argument must be 2-D.
imdilate m-by-n-by-p only SE argument must be 2-D.
imdivide m-by-n-by-p or Image sequences must be the same size.
m-by-n-by-3-by-p
imerode m-by-n-by-p only SE argument must be 2-D.
imextendedmax m-by-n-by-p only Must use the imextendedmax(I,h,conn)
syntax with a 2-D connectivity.
imextendedmin m-by-n-by-p only Must use the imextendedmin (I, h,conn)
syntax with a 2-D connectivity.
imfilter m-by-n-by-p or With grayscale images, h can be 2-D. With
m-by-n-by-3-by-p truecolor images (RGB), h can be 2-D or 3-D.
imhmax m-by-n-by-p only Must use the imhmax (I, h,conn) syntax with
a 2-D connectivity.
imhmin m-by-n-by-p only Must use the imhmin(I,h, conn) syntax with
a 2-D connectivity.
imlincomb m-by-n-by-p or Image sequences must be the same size.

Work with Image Sequences as Multidimensional Arrays

Function Image Sequence Guideline When Used with an Image
Dimensions Sequence
immultiply m-by-n-by-p or Image sequences must be the same size.
m-by-n-by-3-by-p
imopen m-by-n-by-p only SE argument must be 2-D.
imregionalmax m-by-n-by-p only Must use the imextendedmax (I, conn)
syntax with a 2-D connectivity.
imregionalmin m-by-n-by-p only Must use the imextendedmin (I, conn)
syntax with a 2-D connectivity.
imsubtract m-by-n-by-p or Image sequences must be the same size.
m-by-n-by-3-by-p
imtophat m-by-n-by-p only SE argument must be 2-D.
imwarp m-by-n-by-p or tform argument must be 2-D.
m-by-n-by-3-by-p
padarray m-by-n-by-p or PADSIZE argument must be a two-element
m-by-n-by-3-by-p vector.
rangefilt m-by-n-by-p only nhood argument must be 2-D.
stdfilt m-by-n-by-p only nhood argument must be 2-D.
watershed m-by-n-by-p only Must use watershed (I, conn) syntax with a
2-D connectivity.
See Also
More About
. “Perform an Operation on a Sequence of Images” on page 2-18
. “View Image Sequences in Video Viewer” on page 4-87
. “Process Folder of Images Using Image Batch Processor App” on page 2-20

2-17

2 Introduction

Perform an Operation on a Sequence of Images

2-18

This example shows how to perform an operation on a sequence of images. The example creates an
array of images and passes the entire array to the stdfilt function to perform standard deviation
filtering on each image in the sequence.

Create an array of file names.

fileFolder = fullfile(matlabroot, 'toolbox', 'images', 'imdata');

dirQutput = dir(fullfile(fileFolder, 'AT3 1m4 *.tif"'));
fileNames = {dirOutput.name}'

numFrames = numel(fileNames)

fileNames =

10x1 cell array

{'AT3 1m4 01.tif'}
{'AT3 1m4 _02.tif'}
{'AT3 1m4 03.tif'}
{'AT3 1m4 _04.tif'}
{'AT3 1m4 05.tif'}
{'AT3 1m4 06.tif'}
{'AT3 1m4 _07.tif'}
{'AT3 1m4 08.tif'}
{'AT3 1m4 09.tif'}
{'AT3 1m4_10.tif'}

numFrames =

10

Preallocate an m -by- n -by- p array and read images into the array.

I = imread(fileNames{1});
sequence = zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;

for p = 2:numFrames
sequence(:,:,p) = imread(fileNames{p});
end

Process each image in the sequence, performing standard deviation filtering. Note that, to use
stdfilt with an image sequence, you must specify the nhood argument, passing a 2-D
neighborhood.

sequenceNew = stdfilt(sequence,ones(3));
View each input image followed by its processed image.
figure;

for k = 1l:numFrames
imshow(sequence(:,:,k));

Perform an Operation on a Sequence of Images

title(sprintf('Original Image # %d',k));

pause(1l);

imshow(sequenceNew(:,:,k),[]1);
title(sprintf('Processed Image # %d',k));
pause(1l);

end

Processed Image # 10

2-19

2 Introduction

Process Folder of Images Using Image Batch Processor App

This example shows how to use the Image Batch Processor app to process a batch of images in a
folder or datastore.

Create a new folder in an area where you have write permission and copy a set of 10 images from the
Image Processing Toolbox imdata folder into the new folder.

mkdir("cellprocessing");
copyfile(fullfile(matlabroot, "toolbox","images","imdata",6 "AT3*.tif"),"cellprocessing","f");

Load Images into Image Batch Processor App
Open the Image Batch Processor app from the MATLAB® toolstrip. On the Apps tab, in the Image

Processing and Computer Vision section, click Image Batch Processor B

Image Batch Processor = m} X

PROCESS

Function Name E,‘}' Create [|[|[|[|

|S:|ecif}f batch functi... | - |

Add Use
- I:‘ Include Image Info e | Open Parallel
IMPORT BATCH FUMCTION PARALLEL PROCESS LINK AXES LAYOUT | EXPORT

Load images into the app. In the app toolstrip, click Hl:::l above Add. In the Load Images from Folder
dialog box, specify the folder containing the images you want to load. For this example, specify the
folder that you created in the first step, cellprocessing. By default, the app includes images in
subfolders. Then, click Load.

2-20

Process Folder of Images Using Image Batch Processor App

To load images from a folder, including subfolders, in the app toolstrip, under Add, select Folder,
include subfolders. To load images from an imageDatastore object in the MATLAB workspace,
under Add, select Image datastore from workspace.

The Image Batch Processor app creates thumbnails of the images in the folder and displays them in
a scrollable tab in the left pane. The app displays the first selected image (highlighted in blue) at a
greater resolution in the Input Image tab in the right pane.

& 1mage Batch Pracessor — | s
PROCESS
Function Name E,‘}' Create uuuu E
Specify batch functi.. | = |) =
Add | pecity | | Use : Default
« | [Include Image Info T3 Open | Parallel : Layout
IMPORT BATCH FUNCTION PARALLEL PROCESS LINK AXES LAYOUT | EXPORT a
cellprocessing Input Image

AT3 1md4 01.tif

lShow Al -

.
AT3 Imd4 0L AT3 1md4 02

AT3 1m4 04

AT3 imi 07 AT3 1mi 08

‘I

1 of 10 selected

Specify Batch Processing Function

Specify the name of the function you want to use to process the images in the folder. To specify an
existing function, type the name in the Function Name box in the Batch Function section of the app
toolstrip. The function can be a MATLAB function, such as imbinarize, or a previously created
custom batch function. If you use a MATLAB function, it must have the signature out = fcn(in).
You can also click the folder icon next to the box to browse and select the function. To create a new
batch processing function, click Create in the Batch Function section of the app toolstrip. When you
do this, the app opens the batch processing function template in the MATLAB® Editor. For this
example, click Create to create a new function.

2-21

2 Introduction

PROCESS
Ifl:ll:l Function Name 5 Create (=] untitled * — | b
& Edit
Add : EDITOR PUELISH VIEW
- [] Include Image Info 3 Open
IMPORT BATCH FUNCTION I{',ZI T | & Compare ~ |> ry
cellprocessing INPUYl New Open Save & Print ~ MAVIGATE CODE AMALYZE SECTION Run Step Stop
v - - -

Show Al v FILE v M M M RUN x
function results = myimfcn(wvarargin) -
¥Image Processing Function
%

VARARGIN - Can contain up to two inputs:
IM - First input is a numeric array containing the image data.
INFO - Second input is a scalar structure containing information abou
the input image source.

AT3 1md 01

b
a
w
[
.
=]
-
=

(= IRC = IV I UY I)
|

w

%
S
%
S
S
% INFO can be used to obtain metadata about the image read.
1@ % To apply a batch function using the INFO argument, you must select tk

S

E

S

S

E

X

11 Include Image Info check box in the app toolstrip.
12
13 RESULTS - A scalar struct with the processing results.
14
15 -
16
14 2
|uTF-8 |CRLF | myimfen [Ln 1 Col 1

1 0f 10 selected

In the batch processing function template, enter code for the new function into the space reserved in
the template file and click Save. This example uses the default name for the batch processing
function, myimfcn, but you can specify any name. For this example, the code specifies a function that
creates a mask image, calculates the total number of cells in the image, and creates a thresholded
version of the original image.

function results = myimfcn(varargin)
%Image Processing Function

VARARGIN - Can contain up to two inputs:
IM - First input is a numeric array containing the image data.
INFO - Second input is a scalar structure containing information about
the input image source.

INFO can be used to obtain metadata about the image read.
To apply a batch function using the INFO argument, you must select the
Include Image Info check box in the app toolstrip.

RESULTS - A scalar struct with the processing results.

Process Folder of Images Using Image Batch Processor App

file automatically.

% INput parsing-------cc-comommmom i

im = varargin{1l};

if nargin == 2
% Obtain information about the input image source
info = varargin{2};

end

% Replace the sample below with your code----------------------------

imstd
bw

stdfilt(im,ones(27));
imstd>30;

thresholdMask = imfuse(im, bw);
[~, n] = bwlabel(bw);

results.bw = bw;

results.thresholdMask = thresholdMask;
results.numCells = n;

end

Save the file. After saving, the app displays the name of this new function in the Function Name box

on the app toolstrip.

ﬂ Image Batch Processor

PROCESS
Mame of batch
E Eunction Name |PrOCe€ssing function u P
myirmfcon I
Add ! : ze Process
- |:| Include Image Info 13 Open Parallel = Selected -
IMPORT BATCH FUNCTION FARALLEL PROCES!

Process Images Using Batch Processing Function

Test the new function by running the batch processor on one of your images. With one image selected
(highlighted in blue), click Process Selected to process the selected image. The app displays the
results of the processing in a new panel called Results. For this example, the app displays the binary
mask, a count of the number of objects (cells) in the image, and a thresholded version of the image.

2-23

2 Introduction

PROCESS

Function Name EEJ Create 2
ED:I |myimfcn | b | 05' Edit uuuu D Link Axes E @
Add i Use Process Default | Export
- [Include Image info 3 Open Parallel | Selected w Layout b
IMPORT BATCH FUNCTION PARALLEL PROCESS LINK AXES LAYOUT | EXPORT
cellprocessing Input Image Results

Show Al I Processed image ol "

AT3 1m4 01.tif

AT3 1md D1

numCells

thresholdMask [show |

3 im4 07

I 1 of 10 selected 1 done of 1. 1 successful. ki

To get a closer view of the image results, click Show for that particular result in the Results panel.
The app open a larger resolution version of the image in a new tab in a bottom-center pane. For this
example, view the binary mask results be clicking Show for bw in the Results panel. To explore the
results, move the cursor over the image to access the pan and zoom controls. When zooming and
panning, the app links the result image to the original image—panning or zooming on one image
causes the other image to move as well. If you do not want this behavior, clear Link Axes in the app
toolstrip.

2-24

Process Folder of Images Using Image Batch Processor App

Image Batch Processor

PROCESS

EDJ Function Name E'L,I:l Create [I[I[“] D Q
[l |
myimfcn Y Edit | Link Axes
Add | J | | _(/} Use Process Default | Export
- I:‘ Include Image Info 1 Open Parallel = Selected = Layout -
IMPORT BATCH FUNCTION PARALLEL PROCESS LINK AXES LAYOUT | EXPORT
cellprocessing Input Image Results

Show All

AT3 1md_01.tif

ATS_lmQ 01

e

numCells

thresholdMask | Show |

1 of 10 selected 1 done of 1. 1 successful.

If the results of the test run on one image are successful, then execute the function on all of the
images in the folder. To process all the images at once, on the app toolstrip, click Process Selected
and select Process All. To process only a subset of the images, click Process Selected. You can
select images to process either by pressing Ctrl and clicking the desired images or by clicking one
image to start, pressing Shift, and clicking another image to select all images in between the starting
and ending images. If you have Parallel Computing Toolbox™, you can click Use Parallel on the app
toolstrip to process the images on a local parallel pool. For this example, process all of the images.

The app processes all the images in the folder or datastore. A filled-in green square next to a
thumbnail indicates the app successfully processed that image. The Results panel contains the
results of the selected image (highlighted in blue). A status bar at the bottom-right of the app reports
on the number of images processed.

Export Processed Images and Processing Pipeline

To save the results, click Export to view the options available. You can export results to the
workspace or to a file, or you can get the MATLAB® code the app used to generate the results.

Save the results in a workspace variable. On the app toolstrip, click Export and select Export result
of all processed images to workspace option. In the dialog box that opens, select the results you
want to export. A common approach is to export the nonimage results to the workspace and save the
images that result from the processing in files. This example saves the cell count along with the name
of the input file to the workspace variable numCells.

2-25

2 Introduction

2-26

4| Export result of all proc... — >

Choose result fields to export
[]bw

[+/| numCells
[]thresholdMask

Include input image file name

() Table () Struct Array

,

Variable name:

allresults

| oK | [cancel |

By default, the app returns the results you select in a table named allresults. To store the results
in a structure instead of a table, select Struct Array in the dialog box. To specify another name for the
result variable, change Variable name in the dialog box. If you select Include input image file
name, the app includes the name of the image associated with the results in the structure or table.
After specifying exporting details, click OK.

To get the MATLAB® code that the app used to process your files, on the app toolstrip, click Export
and select Generate function. The app generates a function that accepts the input folder name or
imageDatastore object, as well as the output folder name, as input arguments. By default, the
generated function returns a table with the results, but you can choose a structure instead. For image
results, you can specify the file format and whether you want the function to write the image to the
specified output folder.

See Also
Image Batch Processor | imageDatastore

Related Examples

. “Process Images Using Image Batch Processor App with File Metadata” on page 2-27

Process Images Using Image Batch Processor App with File Metadata

Process Images Using Image Batch Processor App with File
Metadata

This example shows how to access input file information while processing a batch of images in the
Image Batch Processor app.

The processing pipeline used in this example renders RGB images from RAW Bayer-pattern color
filter array (CFA) images. For an example that shows how to implement the pipeline for one image,
see “Implement Digital Camera Processing Pipeline” on page 3-41. Once you create the processing
pipeline, the next step in many image processing applications is to scale it up to operate on a batch of
images. You can batch process images using built-in or custom processing functions using the Image
Batch Processor. The custom batch processing function in this example uses the info input argument
to access file information for each image in the batch.

In this example, you load each image into the app as a raw CFA image using rawread. The batch
processing function applies this sequence of operations from a traditional camera processing
pipeline.

1 Linearize the CFA image.

Scale the CFA data to a suitable range.

Apply white-balance adjustment.

Demosaic the Bayer pattern.

g A W N

Convert the demosaiced image to the sRGB color space.

If your application does not require a flexible camera processing pipeline, you can load a folder of
RAW files as RGB images directly into the app. By default, the app reads RAW files by using raw2rgb,
which automatically converts each CFA image into an RGB image. The approach used in this example
is more flexible and customized to each image. By using the info argument, the batch processing
function uses the metadata for each input file to apply custom intensity scaling and correction before
converting it to RGB.

Create Image Datastore

Create an image datastore object containing all files with the NEF file extension in the current
example folder. To read the raw CFA images, specify the ReadFcn name-value argument as
@rawread.

dataDir = pwd;
imds = imageDatastore(dataDir,FileExtensions=".nef",ReadFcn=@rawread);

Load Image Datastore into Image Batch Processor App

Load the ImageDatastore object into the Image Batch Processor app. The app opens and loads the
images from the datastore using the read function rawread, which returns the visible portion of the
CFA image in each file. The app creates thumbnails of the images in the datastore and displays them
in a scrollable tab in the left pane. The app displays the first selected image (highlighted in blue) in
larger resolution in the Input Image tab in the right pane. In this example, the datastore contains
only one NEF file, so only one thumbnail is visible.

imageBatchProcessor(imds)

2-27

2 Introduction

8 Image Batch Processor — O >
PROCESS
Function Name E,'_,'J Create ”H”H ["w._
/
Specify batch functior] | ~ 7 Edit Link Axes .
Add | dese = 1 | | ¢ Use Process t Default
- Include Image Info L1 Open Parallel = Selected = Layout
IMPORT BATCH FUNCTION PARALLEL PROCESS LINE AXES LAYOUT | EXPORT
ProcesslmagesUsinglmage. .. Input Image
colorCheckerTestImage .NEF
Show All v

colorCheckerTestImage

| 1 of 1 selected

Specify Batch Processing Function

Specify the name of the function you want to use to process the images. To specify an existing custom
function or a built-in MATLAB function, type the name in the Function Name box in the Batch
Function section of the app toolstrip. You can also click Open next to the box to browse and select
the function. To create a new batch processing function, click Create in the Batch Function section
of the app toolstrip. The app then opens the batch processing function template in the MATLAB®
Editor. For this example, click Create to create a new function.

2-28

Process Images Using Image Batch Processor App with File Metadata

PROCESS
I:Il:'l:I Function Name E::,I:I Create [&] untitled2 * _ 0 %
& Edit =
o Do e T CF
- 1 Open Ny
IMPORT -AT:.'— FUNCTION EE:I E |_|=fJ Compare ~ ’) ||
Mew Open Save [print ~ NAVIGATE CODE = ANALYZE | SECTION Run Step Stop
| Show Al v | -7 - - - - -
FILE RUM
1 function results = myimfcn{varargin) A
25 %Image Processing Function
3
4 VARARGIN - Can contain up to two inputs:
5 IM - First input is a numeric array containing the image dat
coloztheckerlestinags 6 INFO - Second input is a scalar structure containing informs
7 the input image source.
8
9 INFO can be used to obtain metadata about the image read.

To apply a batch function using the INFO argument, you must
Include Image Info check box in the app toolstrip.

RESULTS - A scalar struct with the processing results.

=
[ax]

UTF-8 CRLF myimfcn Ln 1 Col 1

1 of 1 selected

In the batch processing function template, enter code for the new function into the space reserved in
the template file and click Save. This example uses the default name for the batch processing
function, myimfcn, but you can specify any name.

The function template uses varargin to allow either one or two input arguments. The first input
argument is always the image data array im. The second argument, if included, is a structure, info,
that contains these fields:

* Filename — The image source filename, including the path string, name of the file, and file
extension.

* FileSize — Total file size, in bytes.

* Label — Image label name, if present. Otherwise, the Label field contains an empty string.

The Filename field is required to read the file metadata used by the camera processing pipeline. The
myimfcn function accesses the filename using fileName = info.Filename. The rest of the script
uses the image array and metadata attributes to balance the image levels and convert the image to
the sRGB color space. The last two lines of the script assign the variables to be exported in the output
results. Export the intermediate result imDemosaicLinear and the final sSRGB image imsRGB.

function results = myimfcn(varargin)
%Image Processing Function

2-29

2 Introduction

2-30

VARARGIN - Can contain up to two inputs:
IM - First input is a numeric array containing the image data.
INFO - Second input is a scalar structure containing information about
the input image source.

INFO can be used to obtain metadata about the image read.
To apply a batch function using the INFO argument, you must select the
Include Image Info check box in the app toolstrip.

RESULTS - A scalar struct with the processing results.

Auto-generated by imageBatchProcessor App.

When used by the App, this function will be called for each input image
file automatically.

Input parsSing-------- oo

im = varargin{1l};

if nargin ==

% Obtain information about the input image source
info = varargin{2};

end

)
©

)
©

Replace the sample below with your code------------------oo

Get filename from INFO argument

fileName = info.Filename;

)
©

Read file metadata

cfaInfo = rawinfo(fileName);

)
©

Perform black level correction

colorInfo = cfaInfo.ColorInfo;

blackLevel = colorInfo.BlackLevel;

blackLevel = reshape(blackLevel,[1 1 numel(blackLevel)]);

blackLevel = planar2raw(blackLevel);

repeatDims = cfaInfo.ImageSizeInfo.VisibleImageSize ./ size(blackLevel);
blackLevel = repmat(blackLevel, repeatDims);

cfalmage = im - blackLevel;

)
©

Clamp negative pixel values to 0

cfalmage = max(0,cfalmage);

)
©

Scale pixel values to maximum pixel value

cfalmage = double(cfalmage);
maxValue = max(cfaImage(:));
cfalmage = cfalmage ./ maxValue;

)
©

Adjust white balance

whiteBalance = colorInfo.CameraAsTakenWhiteBalance;
gLoc = strfind(cfaInfo.CFALayout,"G");

Process Images Using Image Batch Processor App with File Metadata

’

gLoc = gloc(1

)
whiteBalance = whiteBalance/whiteBalance(glLoc);
whiteBalance = reshape(whiteBalance,[1 1 numel(whiteBalance)]);
whiteBalance = planar2raw(whiteBalance);
whiteBalance = repmat(whiteBalance, repeatDims);

cfaWB = cfaImage .* whiteBalance;
cfaWB = im2uintl6(cfaWB);

% Demosaic
cfaLayout = cfaInfo.CFALayout;
imDebayered = demosaic(cfaWB,cfalLayout);

% Convert to sRGB color space

cam2srgbMat colorInfo.CameraTosRGB;

imTransform = imapplymatrix(cam2srgbMat, imDebayered, "uintl16");
srgbTransform = lin2rgb(imTransform);

% Assign results to export
results.imDemosaicLinear = imDebayered;
results.imsRGB = srgbTransform;

end

After saving the file, the app displays the name of this new custom function in the Function Name
box on the app toolstrip.

Image Batch Processor

| PROCESS Name of batch
Il | Funcion Narr processing function [| >
yimif Edrt
Adg |LYIMEED ‘ I Use Frocess
- Include Image Info 3 Open Parallel | Selected -
IMPORT BATCH FUMCTION PARALLEL PROCESS

Process Images Using Batch Processing Function

Test the new function by running the batch processor on one of your images. To pass the info
argument to the custom batch function, in the Batch Function section of the app toolstrip, select
Include Image Info. You must select the checkbox if the batch processing function expects the info
argument or the app returns an error when you try to process images.

With one image selected (highlighted in blue), click Process Selected Images to process the
selected image. The app displays the results of the processing in a new Results pane. For this
example, the app displays the demosaiced RGB image and the final sSRGB image.

2-31

2 Introduction

Image Batch Processor

Show All

Processed image

[o

colorCheckerTestImage

colorCheckerTestImage . NEF

PROCESS
P Craat —
Funlct..,n Name E,'_,I:l Create ”H”H [) . |£|>
Add |r'r';-'=mfcn | ¥ |‘<’ Edit Usze Process S Default | Export
- Include Image Info 1 Open Parallel = Selected = Layout -
IMPORT BATCH FUNCTIONM PARALLEL PROCESS LINK AXES LAYOUT | EXPORT
ProcesslmagesUsinglmage. .. Input Image

Results panel

imDemosaicLinear

| Show |

imsRGE

| Show |

1 of 1 selected

1 done of 1. 1 successful.

To get a closer view of the image results, in the Results pane, click Show for that particular result.
The app opens a larger resolution version of the image in a new tab in a bottom-center pane. For this
example, view the sSRGB results. In the Results pane, click Show for imsRGB. To explore the results,
move the cursor over the image to access the pan and zoom controls. When zooming and panning, the
app links the result image to the original image—panning or zooming on one image pans or zooms on
the other image as well. If you do not want this behavior, clear Link Axes in the app toolstrip.

2-32

Process Images Using Image Batch Processor App with File Metadata

PROCESS

Function Name E,'_,I:l Create [”][”] D é}
myimfcn | v | & Edit) Link Axes

Add Use Process Default | Export

- Include Image Info [Open Parallel = Selected = Layout -
IMPORT BATCH FUNCTION PARALLEL PROCESS LINE AXES LAYOUT | EXPORT
ProcesslmagesUsinglmage. .. Input Image r Results
colorCheckerTestImage.NEF - —
Show All v imDemosaicLinear | Show |

colorCheckerTestImage

———— imsRGB Show |
imsRGE

1 of 1 selected 1 done of 1. 1 successful.

If the results of the test run on one image are successful, then you can execute the function on all of
the images in the datastore. To process all the images at once, on the app toolstrip, click Process
Selected and select Process All. You can also process only a subset of the images by selecting those
images and clicking Process Selected Images. You can select images to process either by holding
Ctrl and clicking each image you want to include or by clicking one image, holding Shift, and
clicking another image to select all images in between and including the two images. If you have
Parallel Computing Toolbox™, you can click Use Parallel on the app toolstrip to process the images
on a local parallel pool. For this example, select Process All to process all of the images.

The app processes all the images in the datastore. A filled-in green circle with a check mark next to a
thumbnail indicates the app successfully processed that image. The Results pane contains the results
of the selected image thumbnail (highlighted in blue). A status bar at the bottom of the app window
reports on the number of images processed and how many have been processed successfully.

Export Processed Images and Processing Pipeline

You can save your results by exporting them to the workspace or to a file. Alternatively, you can
generate a MATLAB function from the code the app uses to generate the results.

Save the results in a workspace variable. On the app toolstrip, click Export and select Export result
of all processed images to workspace. In the dialog box that opens, select which results you want

2-33

2 Introduction

2-34

to export. For example, you can export the nonimage results to the workspace and save the images
returned by your batch processing function to files. For this example, save the image results and the
name of the input file to the workspace variable allresults.

4| Export result of all proc... — >

Choose result fields to export

[+]imDemosaicLinear
[+]imsRGE

Include input image file name

(w) Table () Struct Array

*,

Variable name:

alresults

| oK | [cCancel |

By default, the app returns the results you select in a table named allresults. To store the results
in a structure instead of a table, select Struct Array. To specify another name for the results
variable, change Variable name in the dialog box. If you select Include input image file name, the
app includes the name of the image associated with the results in the structure or table. After
specifying your exporting details, click OK.

To generate a MATLAB function from the code that the app uses to process your files, on the app
toolstrip, click Export and select Generate function. The app opens the Generate function dialog
box, where you can specify options for the generated function. By default, the generated function
returns a table with the results, but you can select Struct Array to output a structure instead. For
image results, you can specify whether to write the image to a specified output folder or include it in
the results output. When outputting the images to files, you can also specify the file format for each.
Once you click OK, the app generates a function that accepts an image source, as a folder name or
imageDatastore object, and an output folder name as input arguments.

See Also
Image Batch Processor | imageDatastore

Related Examples
. “Process Folder of Images Using Image Batch Processor App” on page 2-20
. “Implement Digital Camera Processing Pipeline” on page 3-41

Process Large Set of Images Using MapReduce Framework and Hadoop

Process Large Set of Images Using MapReduce Framework and
Hadoop

This example shows how to execute a cell counting algorithm on a large number of images using
Image Processing Toolbox™ with MATLAB® MapReduce and datastores. MapReduce is a
programming technique for analyzing data sets that do not fit in memory. The example also uses
MATLAB Parallel Server™ to run parallel MapReduce programs on Hadoop® clusters. The example
shows how to test your algorithm on a local system on a subset of the images before moving it to the
Hadoop cluster.

Download Sample Data

Download the BBBC005v1 data set from the Broad Bioimage Benchmark Collection. This data set is
an annotated biological image set designed for testing and validation. The image set provides
examples of in- and out-of-focus synthetic images, which can be used for validation of focus metrics.
The data set contains almost 20,000 files. For more information, see this introduction to the data set.

At the system prompt on a Linux® system, use the wget command to download the zip file containing
the BBBC data set. Before running this command, make sure that your target location has enough
space to hold the zip file (1.8 GB) and the extracted images (2.6 GB).

wget https://data.broadinstitute.org/bbbc/BBBCOO5/BBBCOO5 v1 images.zip
At the system prompt on a Linux system, extract the files from the zip file.
unzip BBBCOO5 v1 images.zip

Examine the image file names in this data set. The names are constructed in a specific format to
contain useful information about each image. For example, the file name BBBCOO5 v1 images/
SIMCEPImages AOG5 C18 F1 s16 wl.TIF indicates that the image contains 18 cells (C18) and was
filtered with a Gaussian low-pass filter with diameter 1 and a sigma of 0.25x diameter to simulate
focus blur (F1). The wl identifies the stain used. For example, find the number of images in the data
set that use the w1l stain.

d = dir('C:\Temp\BBBCdata\BBBC0OO5 v1 images*wl*'});
numel(d)

ans = 9600

Test Algorithm on Sample Image

View the files in the BBBC data set and test an algorithm on a small subset of the files using the
Image Batch Processor app. The example tests a simple algorithm that segments the cells in the
images. (The example uses a modified version of this cell segmentation algorithm to create the cell
counting algorithm used in the MapReduce implementation.)

Load Image Files into the Image Batch Processor

Open the Image Batch Processor app. From the MATLAB toolstrip, on the Apps tab, in the Image
Processing and Computer Vision section, click Image Batch Processor. You can also open the app
from the command line using the imageBatchProcessor command.

In the Image Batch Processor app, click Import Images and navigate to the folder in which you
stored the downloaded data set.

2-35

https://bbbc.broadinstitute.org/BBBC005

2 Introduction

4 Load Images from Folder — >
C:\tmp\BBBCO05_v1_images| [B ruwse]
Include images in subfolders
[OK] [Cancel]

The Image Batch Processor app displays thumbnails of the images in the folder in the left pane and
a higher-resolution version of the currently selected image in the Input Image tab. View some of the
images to get familiar with the data set.

[Shnw Al

v ‘

AT3 1m4 02

AT3 1md 0

AT3 1md 04

@ \mage Batch Pracessor - O X
PROCESS
E,']:l Create
& | =l =
Function Name :) -

Import Use Default

Images | Specify batch functi.. | = (=3 Open Parallel Layout

IMPCRT BATCH FUNCTION PARALLEL PROCESS LINK AXES LAYOUT | EXPORT a
Cellprocessing Q Input Image o

AT3 1m4 01.tif @@aﬁ

1 of 10 selected

2-36

Process Large Set of Images Using MapReduce Framework and Hadoop

Specify Segmentation Function

Specify the name of the function that implements your cell segmentation algorithm. To specify an
existing function, type its name in the Function name field or click the folder icon to browse and
select the function. To create a new batch processing function, click Create. The app opens the batch
function template in the MATLAB® editor. For this example, create a new function containing the
following image segmentation code. Click Save to create the batch function. The app updates to
display the name of the function you created in the Batch Function section of the app toolstrip.

function imout = cellSegmenter(im) % A simple cell segmenter
% Otsu thresholding
bw = imbinarize(im);

% Show thresholding result in app
imout = imfuse(im,bw);

% Find area of blobs
stats = regionprops('table',bw,{'Area'});

% Average cell diameter is about 33 pixels (based on random inspection)
cellArea = pi*(33/2)"2;

% Estimate cell count based on area of blobs
cellsPerBlob = stats.Area/cellArea;
cellCount = sum(round(cellsPerBlob));
disp(cellCount);

end

Test Your Segmentation Function on Sample Image

Select the thumbnail of an image displayed in the app and click Process Selected to execute a test
run of your algorithm. For this example, choose only an image with the “w1” stain (identifiable in the
file name). The segmentation algorithm works best with these images.

Image Batch Processor

| PROCESS Name of batch
processing function

&3 *

Function Mame 39;' Edit
Import Use
Images || cellsegmenter | i |'-__=|| Open Parallel
IMPORT BATCH FUNCTION PARALLEL
BBEBCO05 w1 _images ‘ Input Image

Examine the results of running your algorithm to verify that your segmentation algorithm found the
correct number of cells in the image. The names of the images contain the cell count in the C number.
For example, the image named SIMCEPImages A05 C18 F1 s05 wl.TIF contains 18 cells.
Compare this number to the results returned at the command line for the sample image.

Test Algorithm on MapReduce Framework Locally

After assuring that your segmentation code works as expected on one image, set up a small test
version on your local system of the large scale processing you want to perform. You should test your
processing framework before running it on thousands of files.

2-37

2 Introduction

2-38

Load Image Files into Image Datastore

First, create an image datastore, using the imageDatastore function, containing a small subset of
your images. MapReduce uses a datastore to process data in small chunks that individually fit into
memory. Move to the folder containing the images and create an image datastore. Because the cell
segmentation algorithm implemented in cellSegmenter.m works best with the cell body stain,
select only the files with the indicator wl in their file names.

localimds = imageDatastore(fullfile('/your data/broad data/BBBCOO5 v1-
images', '*wl*'));

Even limiting the selection to file with "w1" in their names, the image data store still contains over
9000 files. Subset the list of images further, selecting every 100th file from the thousands of files in
the data set.

localimds.Files = localimds.Files(1:100:end);
Repackage the Sample Set into an Hadoop Sequence File

Once you have created the image datastore, convert the sample subset of images into Hadoop
sequence files, a format used by the Hadoop cluster. Note that this step simply changes the data from
one storage format to another without changing the data value. For more information about sequence
files, see “Getting Started with MapReduce”.

To convert the image datastore to an Hadoop sequence file, create a “map” function and a “reduce”
function which you pass to the mapreduce function. To convert the image files to Hadoop sequence
files, the map function should be a no-op function. For this example, the map function simply saves
the image data as-is, using its file name as a key.

function identityMap(data, info, intermKVStore)
add(intermKVStore, info.Filename, data);
end

Create a reduce function that converts the image files into a key-value datastore backed by sequence
files.

function identityReduce(key, intermValuelter, outKVStore)
while hasnext(intermValueIter)
add (outKVStore, key, getnext(intermValuelter));
end
end

Call mapreduce, passing your map and reduce functions. The example first calls the mapreducer
function to specify where the processing takes place. To test your set up and perform the processing
on your local system, specify 0.

mapreducer(0);
When run locally, mapreduce creates a key-value datastore backed by MAT-files.

localmatds =
mapreduce(localimds,@identityMap,@identityReduce, 'OutputFolder', pwd);

Test MapReduce Framework Locally

After creating the subset of image files for testing, and converting them to a key-value datastore, you
are ready to test the algorithm. Modify your original cell segmentation algorithm to return the cell

Process Large Set of Images Using MapReduce Framework and Hadoop

count. (The Image Batch Processor app, where this example first tested the algorithm, can only
return processed images, not values such as the cell count.)

Modify the cell segmentation function to return a cell count and remove the display of the image.

function cellCount = cellCounter(im)

end

% O0tsu thresholding
bw = imbinarize(im);

% Find area of blobs
stats = regionprops('table',bw,{'Area'});

% Average cell diameter is about 33 pixels (based on random inspection)
cellArea = pi*(33/2)"2;

% Estimate cell count based on area of blobs
cellsPerBlob = stats.Area/cellArea;
cellCount = sum(round(cellsPerBlob));

Create a map function that calculates the error count for a specific image. This function gets the
actual cell count for an image from the file name coding (the C number) and compares it to the cell
count returned by the segmentation algorithm.

function mapImageToMisCountError(data, ~, intermKVStore)

end

% Extract the image

im = data.Value{l};

% Call the cell counting algorithm

actCount = cellCounter(im);

% The original file name is available as the key

fileName = data.Key{1l};

[~, name] = fileparts(fileName);

% Extract expected cell count and focus blur from the file name
strs = strsplit(name, ' ');

expCount = str2double(strs{3}(2:end));
focusBlur = str2double(strs{4}(2:end));
diffCount = abs(actCount-expCount);

% Note: focus blur is the key
add(intermKVStore, focusBlur, diffCount);

Create a reduce function that computes the average error in cell count for each focus value.

function reduceErrorCount(key, intermValueIter, outKVStore)

end

focusBlur = key;
% Compute the sum of all differences in cell count for this value of
% focus blur
count = 0;
totalDiff = 0;
while hasnext(intermValuelter)
diffCount = getnext(intermvaluelter);
count = count + 1;
totalDiff = totalDiff+diffCount;
end
% Average
meanDiff = totalDiff/count;
add (outKVStore, focusBlue, meanDiff);

2-39

2 Introduction

2-40

Run the mapreduce job on your local system.

focusErrords =
mapreduce(localmatds,@mapImageToMisCountError,@reduceErrorCount);

Gather the results.

focusErrorTbl = readall(focusErrords);

Get the average error values.

averageErrors = cell2mat(focusErrorTbl.Value);

The simple cell counting algorithm used here relies on the average area of a cell or a group of cells.
Increasing focus blur diffuses cell boundaries, and thus the area. The expected result is for the error
to go up with increasing focus blur, as seen in this plot of the results.

function plot errors()
bar(focusErrorTbl.Key, averageErrors);

ha = gca;
ha.XTick = sort(focusErrorTbl.Key);
ha.XLim = [min(focusErrorTbl.Key)-2 max(focusErrorTbl.Key)+2];

title('Cell counting result on a test data set');
xlabel('Focus blur');

ylabel('Average error in cell count');

end

- Cell counting result on a test data set

Average error in cell count

1 4 7 10

14 17 20 23 26 29 32 35
Focus blur

39 42 45 48

Process Large Set of Images Using MapReduce Framework and Hadoop

Run MapReduce Framework on Hadoop Cluster

Now that you've verified the processing of your algorithm on a subset of your data, run your
algorithm on the full dataset on a Hadoop cluster.

Load Data into the Hadoop File System

Load all the image data into the Hadoop file system and run your MapReduce framework on a
Hadoop cluster, using the following shell commands. To run this command, replace your data with
the location on your computer.

hadoop fs -mkdir /user/broad data/

hadoop fs -copyFromLocal /your data/broad data/BBBCOO5 v1 images /user/
broad data/BBBC005 v1 images

Set Up Access to MATLAB Parallel Server Cluster

Set up access to the MATLAB Parallel Server cluster. To run this command, replace 'your/hadoop/
install' with the location on your computer.

setenv('HADOOP _HOME','/your/hadoop/install');

cluster = parallel.cluster.Hadoop;
cluster.HadoopProperties('mapred.job.tracker') = 'hadoop0lglnxa64:54311"';
cluster.HadoopProperties('fs.default.name') = 'hdfs://hadoop0lglnxa64:54310";

disp(cluster);

Change Mapreduce Execution Environment to Remote Cluster

Change the mapreduce execution environment to point to the remote cluster.
mapreducer(cluster);

Convert All Image Data into Hadoop Sequence Files

Convert all the image data into Hadoop sequence files. This is similar to what you did on your local
system when you converted a subset of the images for prototyping. You can reuse the map and reduce

functions you used previously. Use the internal Hadoop cluster.

broadFolder = 'hdfs://hadoop0lglnxa64:54310/user/broad data/
BBBCOO5 v1 images';

Pick only the cell body stain (w1) files for processing.
wlFiles = fullfile(broadFolder, '*wl*.TIF');
Create an ImageDatastore representing all these files
imageDS = imageDatastore(wlFiles);

Specify the output folder.

2-41

2 Introduction

2-42

seqFolder = 'hdfs://hadoop0lglnxa64:54310/user/datasets/images/broad data/
broad sequence';

Convert the images to a key-value datastore.

seqds =
mapreduce(imageDS,@identityMap,@identityReduce, 'OutputFolder', seqFolder);

Run Cell Counting Algorithm on Entire Data Set

Run the cell counting algorithm on the entire data set stored in the Hadoop file system using the
MapReduce framework. The only change from running the framework on your local system is that
now the input and output locations are on the Hadoop file system.

First, specify the output location for error count.

output = 'hdfs://hadoopOlglnxa64:54310/user/broad data/
BBBCOO5 focus vs errorCount';

Run your algorithm on the Mapreduce framework. Use the tic and toc functions to record how long
it takes to process the set of images.

tic

focusErrords =
mapreduce(seqds,@mapImageToMisCountError,@reduceErrorCount, 'OutputFolder',out

put);
toc
Gather results.

readall(focusErrords);

focusErrorTbl

averageErrors cell2mat(focusErrorTbl.Value);

Plot the results, as before.

function reduceErrorCountAll(key, intermValuelter, outKVStore)
bar(focusErrorTbl.Key, averageErrors);

ha = gca;
ha.XTick = sort(focusErrorTbl.Key);
ha.XLim = [min(focusErrorTbl.Key)-2 max(focusErrorTbl.Key)+2];

title('Cell counting result on the entire data set');
xlabel('Focus blur');
ylabel('Average error in cell count');

end

Process Large Set of Images Using MapReduce Framework and Hadoop

Cell counting result on the entire data set

{0 s

Average error in cell count

1 4 7 10 14 17 20 23 26 29 32 35 39 42 45 48
Focus blur

See Also
ImageDatastore | mapreduce

More About

. “Getting Started with MapReduce”
. “Work with Remote Data”

2-43

2 Introduction

Detecting Cars in a Video of Traffic

This example shows how to use Image Processing Toolbox™ to visualize and analyze videos or image
sequences. This example uses VideoReader (MATLAB®), implay, and other Image Processing
Toolbox functions to detect light-colored cars in a video of traffic. Note that VideoReader has
platform-specific capabilities and may not be able to read the supplied Motion JPEG2000 video on
some platforms.

Step 1: Access Video with VideoReader

The VideoReader function constructs a multimedia reader object that can read video data from a
multimedia file. See VideoReader for information on which formats are supported on your platform.

Use VideoReader to access the video and get basic information about it.

trafficVid VideoReader('traffic.mj2")

trafficVid =

VideoReader with properties:

General Properties:
Name: 'traffic.mj2'
Path: 'B:\matlab\toolbox\images\imdata
Duration: 8
CurrentTime: 0O
NumFrames: 120

Video Properties:
Width: 160
Height: 120
FrameRate: 15
BitsPerPixel: 24
VideoFormat: 'RGB24'

The get method provides more information on the video such as its duration in seconds.

get(trafficVvid)

obj =
VideoReader with properties:

General Properties:
Name: 'traffic.mj2'
Path: 'B:\matlab\toolbox\images\imdata'
Duration: 8
CurrentTime: 0O
NumFrames: 120

Video Properties:

Width: 160
Height: 120

2-44

Detecting Cars in a Video of Traffic

FrameRate: 15
BitsPerPixel: 24
VideoFormat: 'RGB24'
Step 2: Explore Video with IMPLAY

Explore the video in implay.

implay('traffic.mj2");

EH-ZI'—'H Plaver | = ” (=] ” 23 |

File Tools View Playback Help E
NaaE? B 0% aawy |

HA«EPFBD M|

Stopped Magnification: 100% RGE120x160 |[100%: (15 fps) (15120

Step 3: Develop Your Algorithm

When working with video data, it can be helpful to select a representative frame from the video and
develop your algorithm on that frame. Then, this algorithm can be applied to the processing of all the
frames in the video.

For this car-tagging application, examine a frame that includes both light-colored and dark-colored
cars. When an image has many structures, like the traffic video frames, it is useful to simplify the
image as much as possible before trying to detect an object of interest. One way to do this for the car
tagging application is to suppress all objects in the image that are not light-colored cars (dark-colored
cars, lanes, grass, etc.). Typically, it takes a combination of techniques to remove these extraneous
objects.

One way to remove the dark-colored cars from the video frames is to use the imextendedmax
function. This function returns a binary image that identifies regions with intensity values above a
specified threshold, called regional maxima. All other objects in the image with pixel values below

2-45

2 Introduction

2-46

this threshold become the background. To eliminate the dark-colored cars, determine the average
pixel value for these objects in the image. (Use im2gray to convert the original video from RGB to
grayscale.) You can use the pixel region tool in implay to view pixel values. Specify the average pixel
value (or a value slightly higher) as the threshold when you call imextendedmax. For this example,
set the value to 50.

darkCarValue = 50;

darkCar = im2gray(read(trafficvid,71));
noDarkCar = imextendedmax(darkCar, darkCarValue);
imshow(darkCar)

figure, imshow(noDarkCar)

In the processed image, note how most of the dark-colored car objects are removed but many other
extraneous objects remain, particularly the lane-markings. The regional maxima processing will not
remove the lane markings because their pixel values are above the threshold. To remove these
objects, you can use the morphological function imopen. This function uses morphological processing
to remove small objects from a binary image while preserving large objects. When using
morphological processing, you must decide on the size and shape of the structuring element used in
the operation. Because the lane-markings are long and thin objects, use a disk-shaped structuring
element with radius corresponding to the width of the lane markings. You can use the pixel region
tool in implay to estimate the width of these objects. For this example, set the value to 2.

sedisk = strel('disk',2);
noSmallStructures = imopen(noDarkCar, sedisk);
imshow(noSmallStructures)

Detecting Cars in a Video of Traffic

To complete the algorithm, use regionprops to find the centroid of the objects in
noSmallStructures (should just be the light-colored cars). Use this information to position the tag
on the light-colored cars in the original video.

Step 4: Apply the Algorithm to the Video

The car-tagging application processes the video one frame at a time in a loop. (Because a typical
video contains a large number of frames, it would take a lot of memory to read and process all the
frames at once.)

A small video (like the one in this example) could be processed at once, and there are many functions
that provide this capability. For more information, see “Process Image Sequences” on page 2-16.

For faster processing, preallocate the memory used to store the processed video.

nframes = trafficVid.NumberOfFrames;
I = read(trafficvid, 1);
taggedCars = zeros([size(I,1l) size(I,2) 3 nframes], class(I));

for k =1 : nframes
singleFrame = read(trafficVid, k);

% Convert to grayscale to do morphological processing.
I = rgb2gray(singleFrame);

% Remove dark cars.
noDarkCars = imextendedmax(I, darkCarValue);

% Remove lane markings and other non-disk shaped structures.
noSmallStructures = imopen(noDarkCars, sedisk);

% Remove small structures.
noSmallStructures = bwareaopen(noSmallStructures, 150);

Get the area and centroid of each remaining object in the frame. The

object with the largest area is the light-colored car. Create a copy
of the original frame and tag the car by changing the centroid pixel

value to red.

aggedCars(:,:,:,k) = singleFrame;

~+ 0% of o° o°

stats = regionprops(noSmallStructures, {'Centroid', 'Area'});

2-47

2 Introduction

if ~isempty([stats.Area])
areaArray = [stats.Areal;
[junk,idx] = max(areaArray);
c = stats(idx).Centroid;
¢ = floor(fliplr(c));
width = 2;
row = c(1)-width:c(1)+width;
col = c(2)-width:c(2)+width;

taggedCars(row,col,1,k) = 255;
taggedCars(row,col,2,k) = 0;
taggedCars(row,col,3,k) = 0;

end
end

Step 5: Visualize Results

Get the frame rate of the original video and use it to see taggedCars in implay.

frameRate = trafficVid.FrameRate;
implay(taggedCars, frameRate);

EILI-:--.-H Player | = ” (=] ” 23 |

File Tools View Playback Help u

Dalcgl? B 0% aad

KA« mPFpDMH ||

Stopped Magnification: 100% RGE120x160 |[100% (15 fps) (14120
See Also
Video Viewer | VideoReader | rgb2gray | imextendedmax | imopen | regionprops |
bwareaopen

2-48

Detecting Cars in a Video of Traffic

More About
. “Work with Image Sequences as Multidimensional Arrays” on page 2-15
. “Perform an Operation on a Sequence of Images” on page 2-18

2-49

2 Introduction

Image Arithmetic Functions

2-50

Image arithmetic is the implementation of standard arithmetic operations, such as addition,
subtraction, multiplication, and division, on images. Image arithmetic has many uses in image
processing both as a preliminary step in more complex operations and by itself. For example, image
subtraction can be used to detect differences between two or more images of the same scene or
object.

You can do image arithmetic using the MATLAB arithmetic operators. The Image Processing Toolbox
software also includes a set of functions that implement arithmetic operations for all numeric,
nonsparse data types. The toolbox arithmetic functions accept any numeric data type, including
uint8, uintl6, and double, and return the result image in the same format. The functions perform
the operations in double precision, on an element-by-element basis, but do not convert images to
double-precision values in the MATLAB workspace. Overflow is handled automatically. The functions
clip return values to fit the data type.

Note On Intel® architecture processors, the image arithmetic functions can take advantage of the
Intel Integrated Performance Primitives (Intel IPP) library, thus accelerating their execution time. The
Intel IPP library is only activated, however, when the data passed to these functions is of specific data
types. See the reference pages for the individual arithmetic functions for more information.

See Also

More About

. “Image Arithmetic Clipping Rules” on page 2-51
. “Nest Calls to Image Arithmetic Functions” on page 2-52

Image Arithmetic Clipping Rules

Image Arithmetic Clipping Rules

The results of integer arithmetic can easily overflow the data type allotted for storage. For example,
the maximum value you can store in uint8 data is 255. Arithmetic operations can also result in
fractional values, which cannot be represented using integer arrays.

MATLAB arithmetic operators and the Image Processing Toolbox arithmetic functions use these rules
for integer arithmetic:

» Values that exceed the range of the integer type are clipped, or truncated, to that range.
» Fractional values are rounded.

For example, if the data type is uint8, results greater than 255 (including Inf) are set to 255. The
table lists some additional examples.

Result Data type Clipped Value
300 uint8 255

-45 uint8 0

10.5 uint8 11

See Also

More About

. “Nest Calls to Image Arithmetic Functions” on page 2-52

2-51

2

Introduction

Nest Calls to Image Arithmetic Functions

2-52

You can use the image arithmetic functions in combination to perform a series of operations. For
example, to calculate the average of two images,

_A+B

C=—

You could enter

I = imread('rice.png');

I2 = imread('cameraman.tif');

K = imdivide(imadd(I,I2),2); % not recommended

When used with uint8 or uint16 data, each arithmetic function rounds and clips its result before
passing it on to the next operation. This can significantly reduce the precision of the calculation.

A better way to perform this calculation is to use the imlincomb function. imlincomb performs all
the arithmetic operations in the linear combination in double precision and only rounds and clips the
final result.

K = imlincomb(.5,I,.5,I2); % recommended

See Also
imlincomb

More About
. “Image Arithmetic Clipping Rules” on page 2-51

Find Vegetation in a Multispectral Image

Find Vegetation in a Multispectral Image

This example shows how to use MATLAB® array arithmetic to process images and plot image data. In
particular, this example works with a three-dimensional image array where the three planes
represent the image signal from different parts of the electromagnetic spectrum, including the visible
red and near-infrared (NIR) channels.

Image data differences can be used to distinguish different surface features of an image, which have
varying reflectivity across different spectral channels. By finding differences between the visible red
and NIR channels, the example identifies areas containing significant vegetation.

Step 1: Import Color-Infrared Channels from a Multispectral Image File

This example finds vegetation in a LANDSAT Thematic Mapper image covering part of Paris, France,
made available courtesy of Space Imaging, LLC. Seven spectral channels (bands) are stored in one
file in the Erdas LAN format. The LAN file, paris.lan, contains a 7-channel 512-by-512 Landsat
image. A 128-byte header is followed by the pixel values, which are band interleaved by line (BIL) in
order of increasing band number. Pixel values are stored as unsigned 8-bit integers, in little-endian
byte order.

The first step is to read bands 4, 3, and 2 from the LAN file using the MATLAB® function
multibandread.

Channels 4, 3, and 2 cover the near infrared (NIR), the visible red, and the visible green parts of the
electromagnetic spectrum. When they are mapped to the red, green, and blue planes, respectively, of
an RGB image, the result is a standard color-infrared (CIR) composite. The final input argument to
multibandread specifies which bands to read, and in which order, so that you can construct a
composite in a single step.

CIR = multibandread('paris.lan',[512, 512, 7], 'uint8=>uint8',...
128, 'bil', 'ieee-le',{'Band', 'Direct',[4 3 21});

Variable CIR is a 512-by-512-by-3 array of class uint8. It is an RGB image, but with false colors.
When the image is displayed, red pixel values signify the NIR channel, green values signify the visible
red channel, and blue values signify the visible green channel.

In the CIR image, water features are very dark (the Seine River) and green vegetation appears red
(parks and shade trees). Much of the image appearance is due to the fact that healthy, chlorophyll-
rich vegetation has a high reflectance in the near infrared. Because the NIR channel is mapped to the
red channel in the composite image, any area with a high vegetation density appears red in the
display. A noticeable example is the area of bright red on the left edge, a large park (the Bois de
Boulogne) located west of central Paris within a bend of the Seine River.

imshow(CIR)
title('CIR Composite')
text(size(CIR,2),size(CIR,1) + 15,...
'Image courtesy of Space Imaging, LLC',...
'FontSize',7, 'HorizontalAlignment', 'right')

2-53

2 Introduction

2-54

CIR Composite

Image courtesy of Space Imaging, LLC

By analyzing differences between the NIR and red channels, you can quantify this contrast in spectral
content between vegetated areas and other surfaces such as pavement, bare soil, buildings, or water.

Step 2: Construct an NIR-Red Spectral Scatter Plot

A scatter plot is a natural place to start when comparing the NIR channel (displayed as red pixel
values) with the visible red channel (displayed as green pixel values). It's convenient to extract these
channels from the original CIR composite into individual variables. It's also helpful to convert from
class uint8 to class single so that the same variables can be used in the NDVI computation below,
as well as in the scatter plot.

NIR = im2single(CIR(:,:,1));
R = im2single(CIR(:,:,2));

Viewing the two channels together as grayscale images, you can see how different they look.

Find Vegetation in a Multispectral Image

imshow(R)
title('Visible Red Band')

Visible Red Band

imshow (NIR)
title('Near Infrared Band')

2-55

2 Introduction

Near Infrared Band

With one simple call to the plot command in MATLAB, you can create a scatter plot displaying one
point per pixel (as a blue cross, in this case), with its x-coordinate determined by its value in the red
channel and its y-coordinate by the value its value in the NIR channel.

plot(R,NIR, '+b")

ax = gca;

ax.XLim = [0 1];
ax.XTick = 0:0.2:1;
ax.YLim = [0 11;
ax.YTick = 0:0.2:1;

axis square

xlabel('red level')

ylabel('NIR level')

title('NIR vs. Red Scatter Plot')

2-56

Find Vegetation in a Multispectral Image

NIR vs. Red Scatter Plot

+

0.8

0.6

MIR level

0.4

0.2

0 0.2 0.4 0.6 0.8 1
red level

The appearance of the scatter plot of the Paris scene is characteristic of a temperate urban area with
trees in summer foliage. There's a set of pixels near the diagonal for which the NIR and red values
are nearly equal. This "gray edge" includes features such as road surfaces and many rooftops. Above
and to the left is another set of pixels for which the NIR value is often well above the red value. This
zone encompasses essentially all of the green vegetation.

Step 3: Compute Vegetation Index via MATLAB® Array Arithmetic

Observe from the scatter plot that taking the ratio of the NIR level to red level would be one way to
locate pixels containing dense vegetation. However, the result would be noisy for dark pixels with
small values in both channels. Also notice that the difference between the NIR and red channels
should be larger for greater chlorophyll density. The Normalized Difference Vegetation Index (NDVI)
is motivated by this second observation. It takes the (NIR - red) difference and normalizes it to help
balance out the effects of uneven illumination such as the shadows of clouds or hills. In other words,

2-57

2 Introduction

2-58

on a pixel-by-pixel basis subtract the value of the red channel from the value of the NIR channel and
divide by their sum.

ndvi = (NIR - R) ./ (NIR + R);

Notice how the array-arithmetic operators in MATLAB make it possible to compute an entire NDVI
image in one simple command. Recall that variables R and NIR have class single. This choice uses
less storage than class double but unlike an integer class also allows the resulting ratio to assume a
smooth gradation of values.

Variable ndvi is a 2-D array of class single with a theoretical maximum range of [-1 1]. You can
specify these theoretical limits when displaying ndvi as a grayscale image.

figure
imshow(ndvi, 'DisplayRange',[-1 11)
title('Normalized Difference Vegetation Index')

Find Vegetation in a Multispectral Image

Normalized Difference Vegetation Index

g
&

L

The Seine River appears very dark in the NDVI image. The large light area near the left edge of the
image is the park (Bois de Boulogne) noted earlier.

Step 4: Locate Vegetation -- Threshold the NDVI Image

In order to identify pixels most likely to contain significant vegetation, apply a simple threshold to the
NDVI image.

threshold = 0.4;
g = (ndvi > threshold);

The percentage of pixels selected is thus
100 * numel(NIR(qg(:))) / numel(NIR)
ans = 5.2204

2-59

2 Introduction

or about 5 percent.

The park and other smaller areas of vegetation appear white by default when displaying the logical
(binary) image qg.

imshow(q)
title('NDVI with Threshold Applied')

NDVI with Threshold Applied

0 P,

it

Step 5: Link Spectral and Spatial Content

To link the spectral and spatial content, you can locate above-threshold pixels on the NIR-red scatter
plot, re-drawing the scatter plot with the above-threshold pixels in a contrasting color (green) and
then re-displaying the threshold NDVI image using the same blue-green color scheme. As expected,
the pixels having an NDVI value above the threshold appear to the upper left of the rest and
correspond to the redder pixels in the CIR composite displays.

2-60

Find Vegetation in a Multispectral Image

Create the scatter plot, then display the thresholded NDVI.

figure

subplot(1,2,1)

plot(R,NIR, '+b")

hold on
plot(R(q(:)),NIR(q(:)), "g+")

axis square

xlabel('red level')

ylabel('NIR Tlevel')

title('NIR vs. Red Scatter Plot')

subplot(1,2,2)

imshow(q)

colormap([0 0 1; 0 1 0]);
title('NDVI with Threshold Applied')

NIR vs. Red Scatter Plot

NDVI with Threshold Applied

MIR level

0 05 1
red leve

See Also
im2single | imshow | multibandread

Related Examples

. “Enhance Multispectral Color Composite Images” on page 8-90

2-61

2 Introduction

More About
. “Images in MATLAB” on page 2-2

2-62

Image Coordinate Systems

Image Coordinate Systems

You can access locations in images using several different image coordinate systems. You can specify
locations using discrete pixel indices because images are stored as arrays. You can also specify
locations using continuous spatial coordinates because images represent real-world scenes in
continuous space.

Pixel Indices

As described in “Images in MATLAB” on page 2-2, MATLAB stores most images as arrays. Each (row,
column) index of the array corresponds to a single pixel in the displayed image.

There is a one-to-one correspondence between pixel indices and subscripts for the first two matrix
dimensions. Similar to array indexing in MATLAB, pixel indices are integer values and range from 1
to the length of the row or column. The indices are ordered from top to bottom, and from left to right.

1 2 3 c

L

I"r

For example, the data for the pixel in the fifth row, second column is stored in the matrix element
(5,2). You use normal MATLAB matrix subscripting to access values of individual pixels. For example,
the MATLAB code

I(2,15)

returns the value of the pixel at row 2, column 15 of the single-channel image I. Similarly, the
MATLAB code

RGB(2,15,:)

returns the color values of the pixel at row 2, column 15 of the multi-channel image RGB.

Spatial Coordinates

In a spatial coordinate system, locations in an image are positions on a continuous plane. Locations
are described in terms of Cartesian x and y coordinates (not row and column indices as in the pixel
indexing system). From this Cartesian perspective, an (x,y) location such as (3.2, 5.3) is meaningful
and distinct from the coordinate (5, 3).

The Image Processing Toolbox defines two types of spatial coordinate systems depending on the

frame of reference. Intrinsic coordinates specify locations with respect to the image's frame of
reference. World coordinates specify locations with respect to an external world observer.

2-63

2 Introduction

2-64

Intrinsic Coordinates

By default, the toolbox defines spatial image coordinates using the intrinsic coordinate system. This
spatial coordinate system corresponds to the image’s pixel indices. The intrinsic coordinates (x,y) of
the center point of any pixel are identical to the column and row indices for that pixel. For example,
the center point of the pixel in row 5, column 3 has spatial coordinates x = 3.0, y = 5.0. Be aware,
however, that the order of intrinsic coordinates (3.0, 5.0) is reversed relative to pixel indices (5,3).

The intrinsic coordinates of the center of every pixel are integer valued. The center of the upper left
pixel has intrinsic coordinates (1.0, 1.0). The center of the lower right pixel has intrinsic coordinates
(numCols, numRows), where numCols and numRows are the number of rows and columns in the
image. In general, the center of the pixel with pixel indices (m, n) falls at the point x = n, y = m in the
intrinsic coordinate system.

Because the size of each pixel in the intrinsic coordinate system is one unit, the boundaries of the
image have fractional coordinates. The upper left corner of the image is located at (0.5, 0.5), not at
(0, 0). Similarly, the lower right corner of the image is located at (numCols + 0.5, numRows + 0.5).

Several functions primarily work with spatial coordinates rather than pixel indices, but as long as you
are using the default spatial coordinate system (intrinsic coordinates), you can specify locations in
terms of their columns (x) and rows (y).

World Coordinates

A world coordinate system (also called a nondefault spatial coordinate system) relaxes several
constraints of the intrinsic coordinate system. In a world coordinate system, pixels can have any
length and width and they can be centered on any coordinate.

Some situations when you might want to use a world coordinate system include:

* When you perform a geometric transformation, such as translation, on an image and want to
preserve information about how the new position relates to the original position.

* When pixels are not square. For example, in magnetic resonance imaging (MRI), you can collect
data such that pixels have a higher sampling rate in one direction than an orthogonal direction.

* When you know how the extent of pixels aligns with positions in the real world. For example, in an
aerial photograph, every pixel might cover a specific 5-by-5 meter patch on the ground.

* When you want to reverse the direction of the x-axis or y-axis. This is a common technique to use
with geospatial data.

There are several ways to define a world coordinate system. You can use spatial referencing objects,
which encode the location of the image in a world coordinate system, the image resolution, and how
the image extent relates to intrinsic and world coordinates. You can also specify the maximum and

Image Coordinate Systems

minimum coordinate in each dimension. For more information, see “Define World Coordinate System
of Image” on page 2-66.

See Also

Related Examples
. “Shift X- and Y-Coordinate Range of Displayed Image” on page 2-69

More About

. “Images in MATLAB” on page 2-2
. “Define World Coordinate System of Image” on page 2-66

2-65

2 Introduction

Define World Coordinate System of Image

2-66

The world coordinate system is a continuous spatial coordinate system that specifies the location in
an image independently of the pixel indices of the image. For more information about coordinate
systems in Image Processing Toolbox, see “Image Coordinate Systems” on page 2-63.

Define Spatial Referencing Objects

To specify a world coordinate system for an image, you can use spatial referencing objects. Spatial
referencing objects define the location of the image in a world coordinate system and specify how the
extents of the image relate to intrinsic and world limits. You can use these objects to specify
nonsquare pixel dimensions by specifying a different image resolution in each dimension. Spatial
referencing objects also enable you to convert between coordinate systems.

Image Processing Toolbox uses includes two spatial referencing objects, imref2d and imref3d. The
table describes the properties of the 2-D spatial referencing object, imref2d. The 3-D spatial
referencing object, imref3d, includes these properties as well as corresponding properties for the Z
dimension.

Property Description
XWorldLimits Upper and lower bounds along the X dimension in world
coordinates (nondefault spatial coordinates)
YWorldLimits Upper and lower bounds along the Y dimension in world
coordinates (nondefault spatial coordinates)
ImageSize Size of the image, returned by the size function.
PixelExtentInWorldX Size of pixel along the X dimension
PixelExtentInWorldY Size of pixel along the Y dimension
ImageExtentInWorldX Size of image along the X dimension
ImageExtentInWorldY Size of image along the Y dimension
XIntrinsicLimits Upper and lower bounds along X dimension in intrinsic

coordinates (default spatial coordinates)

YIntrinsicLimits Upper and lower bounds along Y dimension in intrinsic

coordinates (default spatial coordinates).

To illustrate spatial referencing, this sample code creates a spatial referencing object associated with
a 2-by-2 image. The code specifies the pixel extent in the horizontal and vertical directions as 4 units/
pixel and 2 units/pixel, respectively. The object calculates the world limits, image extent in world
coordinates, and image extent in intrinsic coordinates.

R = imref2d([2 21,4,2)

R =
imref2d with properties:

XWorldLimits: [2 10]

YWorldLimits: [1 5]

ImageSize: [2 2]
PixelExtentInWorldX: 4
PixelExtentInWorldY: 2

Define World Coordinate System of Image

ImageExtentInWorldX: 8

ImageExtentInWorldY: 4
XIntrinsicLimits: [0.5000 2.5000]
YIntrinsicLimits: [0.5000 2.5000]

The figure illustrates how these properties map to elements of the image.

ImageE stantlnWaorldX: 8

*WardLimits: [2 10]

0.0 1 2 3 4 5 8 7 B 9 10
| I I I | I I | I ["
o b pixeiEstentinworidx: s— I | ' [
1 <« 1 I I | | |
L i ___I_E' —_—

* I 2

2| @ 2 & ®i1,1) ®i12

5 = s - n.2)

=| & I3

]] R __

HE ra

wi 5 |

o =

of = 1

£ A FE=--r—- ®(21) ® 22 F——
I i
|

LA B el T T T T T T - =
I | I | o I | | |
| | | | | | | | | |

- r-——-rr—rr——fr-—"—"T~"~"~"r——rr—" 1T —7T——
| | I | | I I | | |
I ! I | | I I | | |
¥ ImageSiza: [2 2]

Specify Minimum and Maximum Image Extent

Image objects (such as obtained when displaying an image using imshow) define the world extent
using the XData and YData properties. Each property is a two-element vector that specifies the
center coordinate of the outermost pixels in that dimension. For more information, see Image.

By default, the intrinsic coordinates, world coordinates, and MATLAB axes coordinates of an image
coincide. For an image A, the default value of XDatais [1 size(A,2)] and the default value of
YDatais [1 size(A,1)]. For example, if A is a 100 row by 200 column image, the default XData is
[1 200] and the default YData is [1 100].

To define a nondefault world coordinate system for an image, specify the image XData and YData
properties with the range of coordinates spanned by the image in each dimension. When you do this,
the MATLAB axes coordinates become identical to the world coordinates and no longer coincide with
the intrinsic coordinates. For an example, see “Shift X- and Y-Coordinate Range of Displayed Image”
on page 2-69.

Note that the values in XData and YData are actually the coordinates for the center point of the
boundary pixels, not the outermost edge of the boundary pixels. Therefore, the actual coordinate
range spanned by the image is slightly larger. For instance, if XData is [1 200] and the image is 200
pixels wide, as for the intrinsic coordinate system, then each pixel is one unit wide and the interval in
X spanned by the image is [0.5 200.5]. Similarly, if XData is [1 200] and the image is 50 pixels wide,

2-67

2 Introduction

as for a nondefault world coordinate system, then each pixel is four units wide and the interval in X
spanned by the image is [-1 202].

You can set XData or YData such that the x-axis or y-axis is reversed. You would do this by placing
the larger value first. For example, set the XData to [200 1].

See Also
imwarp | imshow | imregtform | imregister | imref2d | imref3d

Related Examples
. “Shift X- and Y-Coordinate Range of Displayed Image” on page 2-69

More About

. “Image Coordinate Systems” on page 2-63

2-68

Shift X- and Y-Coordinate Range of Displayed Image

Shift X- and Y-Coordinate Range of Displayed Image

This example shows how to specify a nondefault world coordinate system by changing the XData and
YData properties of a displayed image.

Read an image.
I = imread("peppers.png");

Display the image using the intrinsic coordinate system, returning properties of the image in ax. Turn
on the axis to display the coordinate system.

figure

ax = imshow(I);

title("Image Displayed with Intrinsic Coordinates")
axis on

Image Displayed with Intrinsic Coordinate

50

100

150

200

250

300

350

50 100 150 200 250 300 350 400 450 500

Check the range of the x- and y-coordinates, which are stored in the XData and YData properties of
ax. The ranges match the dimensions of the image.

xrange = ax.XData

xrange = 1Ix2

2-69

2 Introduction

1 512
yrange = ax.YData
yrange = 1x2

1 384

Change the range of the x- and y-coordinates. This example shifts the image to the right by adding
100 to the x-coordinates and shifts the image up by subtracting 25 from the y-coordinates.

xrangeNew
yrangeNew

xrange + 100;
yrange - 25;

Display the image, specifying the shifted spatial coordinates.

figure
axNew = imshow(I,"XData",xrangeNew, "YData",yrangeNew);
title("Image Displayed with Nondefault Coordinates");
axis on

mage Displayed with Nondefault Coordinates

100

150

200

250

350

150 200 250 300 350 400 450 500 550 600

Confirm that the ranges of the x- and y-coordinates of the new image match the shifted ranges
specified by xrangeNew and yrangeNew.

2-70

Shift X- and Y-Coordinate Range of Displayed Image

axNew.XData
ans = 1x2

101 612

axNew.YData
ans = 1x2

-24 359

See Also

More About

. “Image Coordinate Systems” on page 2-63
. “Define World Coordinate System of Image” on page 2-66

2-71

Reading and Writing Image Data

This chapter describes how to get information about the contents of a graphics file, read image data
from a file, and write image data to a file, using standard graphics and medical file formats.

“Read Image Data into the Workspace” on page 3-2

“Read Multiple Images from a Single Graphics File” on page 3-4

“Read and Write 1-Bit Binary Images” on page 3-5

“Write Image Data to File in Graphics Format” on page 3-6

“DICOM Support in Image Processing Toolbox” on page 3-7

“Read Metadata from DICOM Files” on page 3-10

“Read Image Data from DICOM Files” on page 3-12

“Write Image Data to DICOM Files” on page 3-14

“Remove Confidential Information from DICOM File” on page 3-16
“Create New DICOM Series” on page 3-20

“Create Image Datastore Containing DICOM Images” on page 3-24
“Create Image Datastore Containing Single and Multi-File DICOM Volumes” on page 3-26
“Add and Modify ROIs of DICOM-RT Contour Data” on page 3-29
“Create and Display 3-D Mask of DICOM-RT Contour Data” on page 3-33
“Mayo Analyze 7.5 Files” on page 3-39

“Interfile Files” on page 3-40

“Implement Digital Camera Processing Pipeline” on page 3-41

“Work with High Dynamic Range Images” on page 3-51

“Display High Dynamic Range Image” on page 3-53

3 Reading and Writing Image Data

Read Image Data into the Workspace

3-2

This example shows to read image data from a graphics file into the MATLAB® workspace using the
imread function.

Read a truecolor image into the workspace. The example reads the image data from a graphics file
that uses JPEG format.

RGB = imread("football.jpg");

If the image file format uses 8-bit pixels, imread returns the image data as an m-by-n-by-3 array of
uint8 values. For graphics file formats that support 16-bit data, such as PNG and TIFF, imread
returns an array of uint16 values.

whos
Name Size Bytes C(lass Attributes
RGB 256x320x3 245760 uint8

Read a grayscale image into the workspace. The example reads the image data from a graphics file
that uses the TIFF format. imread returns the grayscale image as an m-by-n array of uint8 values.

I = imread("cameraman.tif");

whos
Name Size Bytes C(lass Attributes
I 256x256 65536 uint8
RGB 256x320x3 245760 uint8

Read an indexed image into the workspace. imread uses two variables to store an indexed image in
the workspace: one for the image and another for its associated colormap. imread always reads the
colormap into a matrix of class doub'le, even though the image array itself may be of class uint8 or
uintle.

[X,map] = imread("trees.tif");

whos
Name Size Bytes (lass Attributes
I 256x256 65536 uint8
RGB 256x320x3 245760 uint8
X 258x350 90300 uint8
map 256x3 6144 double

In these examples, imread infers the file format to use from the contents of the file. You can also
specify the file format as an argument to imread. imread supports many common graphics file
formats, such as the Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG),
Portable Network Graphics (PNG), and Tagged Image File Format (TIFF) formats. For the latest
information concerning the bit depths and image formats supported, see imread and imformats
reference pages.

pep = imread("peppers.png","png");
whos

Read Image Data into the Workspace

Name Size Bytes C(lass Attributes
I 256x256 65536 uint8
RGB 256x320x3 245760 uint8
X 258x350 90300 uint8
map 256x3 6144 double
pep 384x512x3 589824 uint8
See Also
imread
More About

. “Image Types in the Toolbox” on page 2-3
. “Read Multiple Images from a Single Graphics File” on page 3-4
. “Write Image Data to File in Graphics Format” on page 3-6

3-3

3 Reading and Writing Image Data

Read Multiple Images from a Single Graphics File

3-4

This example shows how to read multiple images from a single graphics file. Some graphics file
formats allow you to store multiple images. You can read these images using format-specific
parameters with imread. By default, imread imports only the first image in the file.

Preallocate a 4-D array to hold the images to be read from a file.
mri = zeros([128 128 1 27], 'uint8');

Read the images from the file, using a loop to read each image sequentially.

for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end
whos
Name Size Bytes (lass Attributes
frame 1x1 8 double
map 256x3 6144 double
mri 128x128x1x27 442368 uint8
See Also
imread
More About

. “Read Image Data into the Workspace” on page 3-2

Read and Write 1-Bit Binary Images

Read and Write 1-Bit Binary Images

This example shows how to read and write 1-bit binary images.

Check the bit depth of the graphics file containing a binary image, text.png. Note that the file
stores the binary image in 1-bit format.

info = imfinfo('text.png');
info.BitDepth

ans =1

Read the binary image from the file into the workspace. When you read a binary image stored in 1-bit
format, imread represents the data in the workspace as a logical array.

BW = imread('text.png');

whos
Name Size Bytes (lass Attributes
BW 256x256 65536 logical
ans 1x1 8 double
info 1x1 4566 struct

Write the binary image to a file in 1-bit format. If the file format supports it, imwrite exports a
binary image as a 1-bit image, by default. To verify this, use imfinfo to get information about the
newly created file and check the BitDepth field. When writing binary files, imwrite sets the
ColorType field to grayscale.

imwrite(BW, 'test.tif');
info = imfinfo('test.tif');
info.BitDepth

ans =1

See Also
imread | imwrite | imfinfo

More About

. “Image Types in the Toolbox” on page 2-3
. “Read Image Data into the Workspace” on page 3-2

3 Reading and Writing Image Data

Write Image Data to File in Graphics Format

3-6

This example shows how to write image data from the workspace to a file in one of the supported
graphics file formats using the imwrite function.

Load image data into the workspace. This example loads the indexed image X from a MAT-file,
trees.mat, along with the associated colormap map.

load trees
whos
Name Size Bytes C(lass Attributes
X 258x350 722400 double
caption 1x66 132 char
map 128x3 3072 double

Export the image data as a bitmap file using imwrite, specifying the name of the variable and the
name of the output file you want to create. If you include an extension in the filename, imwrite
attempts to infer the desired file format from it. For example, the file extension . bmp specifies the
Microsoft Windows Bitmap format. You can also specify the format explicitly as an argument to
imwrite.

imwrite(X,map, 'trees.bmp"')

Use format-specific parameters with imwrite to control aspects of the export process. For example,
with PNG files, you can specify the bit depth. To illustrate, read an image into the workspace in TIFF
format and note its bit depth.

I = imread('cameraman.tif"');
s = imfinfo('cameraman.tif');
s.BitDepth

ans = 8

Write the image to a graphics file in PNG format, specifying a bit depth of 4.
imwrite(I, 'cameraman.png', 'Bitdepth',4)
Check the bit depth of the newly created file.

newfile = imfinfo('cameraman.png');
newfile.BitDepth

ans = 4

See Also
imwrite

More About

. “Image Types in the Toolbox” on page 2-3
. “Read Image Data into the Workspace” on page 3-2

DICOM Support in Image Processing Toolbox

DICOM Support in Image Processing Toolbox

Digital Imaging and Communications in Medicine (DICOM) is a highly standardized imaging format
used to store and transmit medical imaging files across devices and networks. The DICOM format
combines image data with metadata that describes the patient, the imaging procedure, and the
spatial referencing information. The structure, storage, and transmission of DICOM files is governed
by the DICOM standard, available on the official DICOM website. The standard defines separate
Information Object Definitions (I0Ds) for modalities and applications such as computed tomography
(CT), magnetic resonance imaging (MRI), and radiotherapy (RT).

MATLAB provides support for reading and writing DICOM files, as well as working with DICOM
image data and metadata. You can extract and process image data using toolbox functions, and you
can search and update the metadata attributes. MATLAB is compatible with most DICOM I0Ds, and
can write new DICOM files for certain IODs that fully conform to the DICOM standard.

Note MATLAB supports working with DICOM files. There is no support for working with DICOM
network capabilities.

Read and Display DICOM Image Data

Explore directories with multiple DICOM series using the DICOM Browser app or
dicomCollection function. Read 2-D image data from a DICOM series by using the dicomread
function or 3-D image data by using the dicomreadVolume function. For more information, see
“Read Image Data from DICOM Files” on page 3-12. You can view imported DICOM images using
toolbox display functions such as imshow and volshow.

You can process the image data you read from DICOM files using operations such as image filtering,
registration, segmentation, and labeling. For an example that shows how to segment and calculate
region properties in medical image data, see “Segment Lungs from 3-D Chest Scan” on page 12-20.

Work with DICOM Metadata

Import DICOM metadata using the dicominfo function, which creates a MATLAB structure
specifying the name and value of each metadata attribute in the file. For more information, see “Read
Metadata from DICOM Files” on page 3-10.

https://www.dicomstandard.org/

3 Reading and Writing Image Data

List all attributes of a metadata structure in the Command Window by using the dicomdisp function,
or search for specific attributes by name using the dicomfind function. Update specific attribute
values using the dicomupdate function, or remove all personally identifying information from a
DICOM metadata structure using the dicomanon function. For an example that shows how to
anonymize a DICOM file, see “Remove Confidential Information from DICOM File” on page 3-16 .

When processing DICOM files, MATLAB uses a data dictionary file that defines standard DICOM
metadata attributes. You can view or update the current data dictionary file using the dicomdict
function, or search the data dictionary for specific attributes using the dicomlookup function.

Write New DICOM Files

Write images and metadata to new DICOM files using the dicomwrite function. The toolbox writes
the computed tomography, magnetic resonance, and secondary capture (a modality-independent
object definition) IODs with validation, which ensures that the new file contains all metadata
attributes required by the DICOM standard. For detailed information, see “Write Image Data to
DICOM Files” on page 3-14 and “Create New DICOM Series” on page 3-20.

Work with DICOM-RT Contour Data

The DICOM-RT Structure Set is an 10D specific to radiotherapy applications. The DICOM-RT
metadata includes contour data for ROIs, such as tumors and organs, used in radiation treatment
planning. You can extract ROI contour data to create a dicomContours object.

Plot contours, add or delete contours, and create a new DICOM-RT metadata structure using the
plotContour, addContour, deleteContour, and convertToInfo object functions. For an
example, see “Add and Modify ROIs of DICOM-RT Contour Data” on page 3-29.

Use the createMask object function to convert contour data into a binary mask, such as to view
ROIs overlaid on image data or to label image pixels. For an example, see “Create and Display 3-D
Mask of DICOM-RT Contour Data” on page 3-33.

Prepare DICOM Files for Deep Learning Workflows

You can use medical image data to train deep learning networks to perform tasks such as image
denoising, segmentation, and registration. You can use imageDatastore or pixelLabelDatastore
objects that contain DICOM files to train a deep learning network. For details, see “Create Image
Datastore Containing DICOM Images” on page 3-24 and “Create Image Datastore Containing Single
and Multi-File DICOM Volumes” on page 3-26. For more information about how to use image
datastores to train deep learning networks, see “Preprocess Images for Deep Learning” on page 19-
5.

These examples show applications of deep learning in medical image analysis.

* “Unsupervised Medical Image Denoising Using CycleGAN” on page 19-191
* “Unsupervised Medical Image Denoising Using UNIT” on page 19-205
* “3-D Brain Tumor Segmentation Using Deep Learning” on page 19-148

3-8

DICOM Support in Image Processing Toolbox

See Also

Apps
DICOM Browser

Functions
dicominfo |dicomread | dicomreadVolume | dicomwrite | dicomCollection

More About

. “Read Metadata from DICOM Files” on page 3-10

. “Read Image Data from DICOM Files” on page 3-12

. “Create New DICOM Series” on page 3-20

. “Remove Confidential Information from DICOM File” on page 3-16
. “Write Image Data to DICOM Files” on page 3-14

3-9

3 Reading and Writing Image Data

Read Metadata from DICOM Files

DICOM files contain metadata that provide information about the image data, such as the size,
dimensions, bit depth, modality used to create the data, and equipment settings used to capture the
image. To read metadata from a DICOM file, use the dicominfo function. dicominfo returns the
information in a MATLAB structure where every field contains a specific piece of DICOM metadata.
You can use the metadata structure returned by dicominfo to specify the DICOM file you want to
read using dicomread — see “Read Image Data from DICOM Files” on page 3-12. If you just want
to view the metadata in a DICOM file, for debugging purposes, you can use the dicomdisp function.

The following example reads the metadata from a sample DICOM file that is included with the

toolbox.
info = dicominfo('CT-MONO2-16-ankle.dcm')
info =
Filename: [1x89 char]
FileModDate: '18-Dec-2000 11:06:43'
FileSize: 525436
Format: 'DICOM'
FormatVersion: 3
Width: 512
Height: 512
BitDepth: 16
ColorType: 'grayscale'
FileMetaInformationGroupLength: 192
FileMetaInformationVersion: [2x1 uint8]
MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7"'
MediaStorageSOPInstanceUID: [1x50 char]

TransferSyntaxUID:
ImplementationClassUID:

Private DICOM Metadata

'1.2.840.10008.1.2"
'1.2.840.113619.6.5"

The DICOM specification defines many of these metadata fields, but files can contain additional fields,
called private metadata. This private metadata is typically defined by equipment vendors to provide
additional information about the data they provide.

When dicominfo encounters a private metadata field in a DICOM file, it returns the metadata
creating a generic name for the field based on the group and element tags of the metadata. For

example, if the file contained private metadata at group 0009 and element 0006, dicominfo creates
the name:Private 0009 0006. dicominfo attempts to interpret the private metadata, if it can. For
example, if the metadata contains characters, dicominfo processes the data. If it can't interpret the
data, dicominfo returns a sequence of bytes.

If you need to process a DICOM file created by a manufacturer that uses private metadata, and you
prefer to view the correct name of the field as well as the data, you can create your own copy of the
DICOM data dictionary and update it to include definitions of the private metadata. You will need
information about the private metadata that vendors typically provide in DICOM compliance
statements. For more information about updating DICOM dictionary, see “Create Your Own Copy of
DICOM Dictionary” on page 3-11.

3-10

Read Metadata from DICOM Files

Create Your Own Copy of DICOM Dictionary

MathWorks® uses a DICOM dictionary that contains definitions of thousands of standard DICOM
metadata fields. If your DICOM file contains metadata that is not defined this dictionary, you can
update the dictionary, creating your own copy that it includes these private metadata fields.

To create your own dictionary, perform this procedure:

1 Make a copy of the text version of the DICOM dictionary that is included with MATLAB. This file,
called dicom-dict.txt islocated in matlabroot/toolbox/images/medformats or
matlabroot/toolbox/images/iptformats depending on which version of the Image
Processing Toolbox software you are working with. Do not attempt to edit the MAT-file version of
the dictionary, dicom-dict.mat.

2 Edit your copy of the DICOM dictionary, adding entries for the metadata. Insert the new
metadata field using the group and element tag, type, and other information. Follow the format of
the other entries in the file. The creator of the metadata (such as an equipment vendor) must
provide you with the information.

3 Save your copy of the dictionary.
Set MATLAB to use your copy of the DICOM dictionary, dicomdict function.

See Also

Apps
DICOM Browser

Functions
dicomread | dicominfo | dicomreadVolume | dicomdict | dicomdisp

More About

. “Read Image Data from DICOM Files” on page 3-12

. “Create New DICOM Series” on page 3-20

. “Remove Confidential Information from DICOM File” on page 3-16
. “Write Image Data to DICOM Files” on page 3-14

3-11

3 Reading and Writing Image Data

Read Image Data from DICOM Files

3-12

To read image data from a DICOM file, use the dicomread function. The dicomread function reads
files that comply with the DICOM specification but can also read certain common noncomplying files.

When using dicomread, you can specify the file name as an argument, as in the following example.
The example reads the sample DICOM file that is included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

You can also use the metadata structure returned by dicominfo to specify the file you want to read,
as in the following example.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

View DICOM Images

To view the image data imported from a DICOM file, use one of the toolbox image display functions
imshow or imtool. Note, however, that because the image data in this DICOM file is signed 16-bit
data, you must use the autoscaling syntax with either display function to make the image viewable.

imshow(I, 'DisplayRange’,[1)

See Also

Apps
DICOM Browser

Functions
dicomread | dicominfo | dicomreadVolume

More About

. “Read Metadata from DICOM Files” on page 3-10
. “Create New DICOM Series” on page 3-20

Read Image Data from DICOM Files

“Remove Confidential Information from DICOM File” on page 3-16
“Write Image Data to DICOM Files” on page 3-14

3-13

3 Reading and Writing Image Data

Write Image Data to DICOM Files

3-14

To write image data or metadata to a file in DICOM format, use the dicomwrite function. This
example writes the image I to the DICOM file ankle.dcm.

dicomwrite(I, 'ankle.dcm')

Include Metadata with Image Data

When writing image data to a DICOM file, dicomwrite automatically includes the minimum set of
metadata fields required by the type of DICOM information ohject (I0OD) you are creating.
dicomwrite supports the following DICOM IODs with full validation.

* Secondary capture (default)
* Magnetic resonance
* Computed tomography

dicomwrite can write many other types of DICOM data (such as X-ray, radiotherapy, or nuclear
medicine) to a file. However, dicomwrite does not perform any validation of this data.

You can also specify the metadata you want to write to the file by passing to dicomwrite an existing
DICOM metadata structure that you retrieved using dicominfo. In the following example, the
dicomwrite function writes the relevant information in the metadata structure info to the new
DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I, 'ankle.dcm',info)

Note that the metadata written to the file is not identical to the metadata in the info structure.
When writing metadata to a file, there are certain fields that dicomwrite must update. To illustrate,
look at the instance ID in the original metadata and compare it with the ID in the new file.

info.SOPInstanceUID
ans =
1.2.840.113619.2.1.2411.1031152382.365.1.736169244

Now, read the metadata from the newly created DICOM file, using dicominfo, and check the
SOPInstanceUID field.

info2 = dicominfo('ankle.dcm');

info2.S0PInstanceUID

ans =
1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Note that the instance ID in the newly created file differs from the ID in the original file.

Specify Value Representation

Each field of DICOM metadata (known as an attribute or data element), includes a tag that identifies
the attribute, information about the length of the attribute, and the attribute data. The attribute

Write Image Data to DICOM Files

optionally includes a two-letter value representation (VR) that identifies the format of the attribute
data. For example, the format can be a single-precision binary floating point number, a character
vector that represents a decimal integer, or a character vector in the format of a date-time.

To include the VR in the attribute when using dicomwrite, specify the 'VR' name-value pair
argument as 'explicit'. If you do not specify the VR, then dicomwrite infers the value
representation from the data dictionary.

The figure shows an attribute with and without the VR.

Two-letter code that identifies data type.

Tag| VR| Length Data

1ag | Length Data

(Group, Element)

See Also

Apps
DICOM Browser

Functions
dicomread | dicomwrite | dicominfo | dicomuid | dicomanon

More About

. “Read Metadata from DICOM Files” on page 3-10

. “Read Image Data from DICOM Files” on page 3-12

. “Create New DICOM Series” on page 3-20

. “Remove Confidential Information from DICOM File” on page 3-16

3-15

3 Reading and Writing Image Data

Remove Confidential Information from DICOM File

3-16

This example shows how to anonymize a DICOM file.

When using a DICOM file as part of a training set, blinded study, or a presentation, you might want to
remove confidential patient information, a process called anonymizing the file. To do this, use the
dicomanon function.

Read an image from a DICOM file into the workspace.

dicomFile = 'CT-MONO2-16-ankle.dcm';
I = dicomread(dicomFile);

Display the image. Because the DICOM image data is signed 16-bit data, automatically scale the
display range so that the minimum pixel value is black and the maximum pixel value is white.

imshow(I, 'DisplayRange',[])

Remove Confidential Information from DICOM File

24 1993 2D JFE IMAGIMG CEMTER

]:| F |:| ":_:" l E: % [:] (w11l
BONE

2.0 mmsl, 0

Tl =0

1492 L = 906

Read the metadata from the DICOM file.
info = dicominfo(dicomFile);

The DICOM file in this example has already been anonymized for patient privacy. To create an
informative test DICOM file, set the PatientName with an artificial value using the Person Name
(PN) value representation.

info.PatientName = 'Doe”John';
Write the image with modified metadata to a new DICOM file.

dicomFileNotAnon = 'ankle notAnon.dcm';
dicomwrite(I,dicomFileNotAnon,info);

3-17

3 Reading and Writing Image Data

3-18

Read the metadata from the non-anonymous DICOM file, then confirm that the patient name in the
new file is not anonymous.

infoNotAnon = dicominfo(dicomFileNotAnon);
infoNotAnon.PatientName

ans = struct with fields:
FamilyName: 'Doe'’
GivenName: 'John'

To identify the series to which the non-anonymous image belongs, display the value of the
SeriesInstanceUID field.

infoNotAnon.SeriesInstanceUID

ans =
'1.2.840.113619.2.1.2411.1031152382.365.736169244'

Anonymize the file using the dicomanon function. The function creates a new series with new study
values, changes some of the metadata, and then writes the image to a new file.

dicomFileAnon = 'ankle anon.dcm'

dicomFileAnon =
"ankle _anon.dcm'

dicomanon(dicomFileNotAnon,dicomFileAnon);
Read the metadata from the anonymized DICOM file.
infoAnon = dicominfo(dicomFileAnon);
Confirm that the patient name information has been removed.
infoAnon.PatientName
ans = struct with fields:

FamilyName:

GivenName: '
MiddleName: ''

NamePrefix:
NameSuffix:

Confirm that the anonymous image belongs to a new study by displaying the value of the
SeriesInstanceUID field.

infoAnon.SeriesInstanceUID

ans =
'1.3.6.1.4.1.9590.100.1.2.410008947811848156542246967211826017531"
See Also

Apps
DICOM Browser

Remove Confidential Information from DICOM File

Functions
dicominfo |dicomread | dicomwrite | dicomuid | dicomanon

More About

. “Read Image Data from DICOM Files” on page 3-12

. “Read Metadata from DICOM Files” on page 3-10

. “Create New DICOM Series” on page 3-20

. “Write Image Data to DICOM Files” on page 3-14

. “DICOM Support in Image Processing Toolbox” on page 3-7

3-19

3 Reading and Writing Image Data

Create New DICOM Series

3-20

This example shows how to create a new DICOM series for a modified DICOM image.

In the DICOM standard, images can be organized into series. By default, when you write an image
with metadata to a DICOM file, dicomwrite puts the image in the same series. You typically only
start a new DICOM series when you modify the image in some way. To make the modified image the
start of a new series, assign a new DICOM unique identifier to the SeriesInstanceUID metadata
field.

Read an image from a DICOM file into the workspace.
I = dicomread('CT-MONO2-16-ankle.dcm');

Display the image. Because the DICOM image data is signed 16-bit data, automatically scale the
display range so that the minimum pixel value is black and the maximum pixel value is white.

imshow(I, 'DisplayRange',[])

Create New DICOM Series

T oAD DBE:Z27¥:2d 1993 30 JFE IMAGIMG CEWTER

)

surtace

]:| F |:| ":_:" l E: % [:] (w11l
BONE

Read the metadata from the DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify the series an image belongs to, view the value of the SeriesInstanceUID metadata
field.

info.SeriesInstanceUID

ans =
'1.2.840.113619.2.1.2411.1031152382.365.736169244'

This example modifies the image by removing all of the text from the image. Text in the image

appears white. Find the maximum value of all pixels in the image, which corresponds to the white
text.

3-21

3 Reading and Writing Image Data

textValue = max(I(:));

The background of the image appears black. Find the minimum value of all pixels in the image, which
corresponds to the background.

backgroundValue = min(I(:));

To remove the text, set all pixels with the maximum value to the minimum value.

Imodified = I;
Imodified(Imodified == textValue) = backgroundValue;

View the processed image.

imshow(Imodified, 'DisplayRange',[])

3-22

Create New DICOM Series

To write the modified image as a new series, you need a new DICOM unique identifier (UID).
Generate a new UID using the dicomuid function. dicomuid is guaranteed to generate a unique
UID.

uid = dicomuid

uid =
'1.3.6.1.4.1.9590.100.1.2.308287245712763560906644745193675690637'

Set the value of the SeriesInstanceUID field in the metadata associated with the original DICOM
file to the generated value.

info.SeriesInstanceUID = uid;

Write the modified image to a new DICOM file, specifying the modified metadata structure, info, as
an argument. Because you set the SeriesInstanceUID value, the written image is part of a new
series.

dicomwrite(Imodified, 'ankle newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID metadata field in the new file.

See Also

Apps
DICOM Browser

Functions
dicominfo |dicomread | dicomwrite | dicomuid | dicomanon

More About

. “Remove Confidential Information from DICOM File” on page 3-16
. “DICOM Support in Image Processing Toolbox” on page 3-7

3-23

3 Reading and Writing Image Data

Create Image Datastore Containing DICOM Images

3-24

This example shows how to create an image datastore from a collection of DICOM files containing 2-D
images.

Specify the location of a directory containing 2-D DICOM image files.
dicomDir = 'dog';
Create an imageDatastore, specifying the read function as a handle to the dicomread function.

dicomds = imageDatastore(dicomDir,
'FileExtensions','.dcm', 'ReadFcn',@(x) dicomread(x));

Read and display the first image in the datastore.
I = read(dicomds);

Display the image. The image has signed 16-bit data, so scale the display range to the pixel values in
the image.

imshow(I, [])

Create Image Datastore Containing DICOM Images

See Also
dicomread | imageDatastore

More About

“Create Image Datastore Containing Single and Multi-File DICOM Volumes” on page 3-26

3-25

3 Reading and Writing Image Data

Create Image Datastore Containing Single and Multi-File
DICOM Volumes

This example shows how to create an image datastore containing volumetric DICOM data stored as a
single file and as multiple files.

Specify the location of a directory containing DICOM data. The data includes 2-D images, a 3-D
volume in a single file, and a multi-file 3-D volume.

dicomDir = fullfile(matlabroot,"toolbox","images","imdata");

Gather details about the DICOM files by using the dicomCollection function. This function returns
the details as a table, where each row represents a single study. For multi-file DICOM volumes, the
function aggregates the files into a single study.

collection = dicomCollection(dicomDir,IncludeSubfolders=true)

collection=6x14 table

StudyDateTime SeriesDateTime PatientName PatientSex
Sl {OXO dOLIb-Le } {0)(0 doub-l_e } wn nn
s2 {[30-Apr-1993 11:27:241} {[30-Apr-1993 11:27:241} "Anonymized" e
s3 {[14-Dec-2013 15:47:31]} {[14-Dec-2013 15:54:33]1} "GORBERG MITZI" “E"
s4 {[03-0ct-2011 19:18:11]} {[03-0ct-2011 18:59:02]} o 'k
s5 {[03-0ct-2011 19:18:11]1} {[03-0ct-2011 19:05:04]1} o 'k
s6 {[30-Jan-1994 11:25:01]} {0x0 double } "Anonymized" "

Create a temporary directory to store the processed DICOM volumes.
matFileDir = fullfile(pwd, "MATFiles");
if ~exist(matFileDir,"dir")

mkdir(matFileDir)
end

Loop through each study in the collection.
for idx = l:size(collection,l)

Get the file names that comprise the study. For multi-file DICOM volumes, the file names are listed as
a string array.

dicomFileName = collection.Filenames{idx};
if length(dicomFileName) > 1

matFileName = fileparts(dicomFileName(1));

matFileName = split(matFileName, filesep);

matFileName = replace(strtrim(matFileName(end))," "," ");
else

[~,matFileName] = fileparts(dicomFileName);

end
matFileName = fullfile(matFileDir,matFileName);

Read the data. Try different read functions because the images have a different number of
dimensions and are stored in different formats.

3-26

Create Image Datastore Containing Single and Multi-File DICOM Volumes

1) Try reading the data of the study by using the dicomreadVolume function.

+ If the data is a multi-file volume, then dicomreadVolume runs successfully and returns the
complete volume in a single 4-D array. You can add this data to the datastore.

» If the data is contained in a single file, then dicomreadVolume does not run successfully.
2) Try reading the data of the study by using the dicomread function.

* Ifdicomread returns a 4-D array, then the study contains a complete 3-D volume. You can add
this data to the datastore.

+ Ifdicomread returns a 2-D matrix or 3-D array, then the study contains a single 2-D image. Skip
this data and continue to the next study in the collection.

try
data
catch ME
data = dicomread(dicomFileName);
if ndims(data)<4
% Skip files that are not volumes
continue;
end

dicomreadVolume(collection,collection.Row{idx});

end

For complete volumes returned in a 4-D array, write the data and the absolute file name to a MAT file.
save(matFileName, "data", "dicomFileName");

End the loop over the studies in the collection.

end

Create an imageDatastore from the MAT files containing the volumetric DICOM data. Specify the
ReadFcn property as the helper function matRead, defined at the end of this example.

imdsdicom = imageDatastore(matFileDir,FileExtensions=".mat",
ReadFcn=@matRead) ;

Read the first DICOM volume from the image datastore.

[V,Vinfo] = read(imdsdicom);
[~,VFileName] = fileparts(Vinfo.Filename);

The DICOM volume is grayscale. Remove the singleton channel dimension by using the squeeze
function, then display the volume by using the volshow function.

V = squeeze(V);
volshow(V);

3-27

3 Reading and Writing Image Data

3-28

Supporting Functions

The matRead function loads data from the first variable of a MAT file with file name filename.

function data = matRead(filename)
inp = load(filename);
f = fields(inp);
data = inp. (f{1});

end

See Also
dicominfo |dicomread | dicomreadVolume | dicomCollection | volshow | imageDatastore

More About

. “Create Image Datastore Containing DICOM Images” on page 3-24
. “Preprocess Volumes for Deep Learning” (Deep Learning Toolbox)

Add and Modify ROIs of DICOM-RT Contour Data

Add and Modify ROIs of DICOM-RT Contour Data

This example shows how to extract and modify contour data stored in a DICOM-RT structure set.

A DICOM-RT structure set is a DICOM Information Object Definition (IOD) specific to radiotherapy.
The metadata of a DICOM-RT structure set file includes contour data for regions of interest (ROIs)
relevant to radiation treatment planning. This example extracts ROI contour data into a
dicomContours object, and uses object functions to display, add, and remove ROIs and save the
modified contours to a new metadata structure. These steps are useful for exploring DICOM-RT
structure files and for writing new metadata structures if you update the contour data in MATLAB®.
This example uses a data set defining contours for a human torso and synthetic tumor and organ
regions.

Read the DICOM metadata from a DICOM-RT structure set file by using the dicominfo function.
info = dicominfo("rtstruct.dcm");

Extract the ROI data from the DICOM metadata. The output is a dicomContours object that stores
the extracted ROI data.

contourData = dicomContours(info);

Display the ROIs property of the dicomContours object. The ROIs property is a table that contains
the extracted ROI data.

contourData.ROIs

ans=2x5 table

Number Name ContourData GeometricType Color
1 {'Body Contour' } {90x1 cell} {90x1 cell} {3x1 double}
2 {'Tumor Contour'} {21x1 cell} {21x1 cell} {3x1 double}

Plot the ROI contour data from the dicomContours object.
figure

plotContour(contourData)
axis equal

3-29

3 Reading and Writing Image Data

3-30

Load the MAT file countours.mat into the workspace. The cell array contours specifies 3-D
coordinates of the boundary points for a new ROI with 21 axial slices.

load("contours.mat")

To create an ROI sequence that contains the new ROI contour data, specify these attributes.

* ROI number
* User-defined name for the ROI
* Geometric type of the contours

The ROI number for the sequence must be unique, but the ROI name can be any user-defined name.
Because all points in the new ROI contour data are coplanar, and the last point is connected to the
first point, specify the geometric type as "Closed planar". Specify the display color for plotting the
new ROI as blue-green.

number = 3;

name = "Organ";

geometricType = "Closed planar";
color = [0; 127; 127];

Add the new ROI sequence to the ROIs property of the dicomContours object. The output is a
dicomContours object that contains the new ROI sequence, as well as the original ones.

contourData = addContour(contourData,number,name, contours,geometricType,color);
contourData.R0OIs

ans=3x5 table

Number Name ContourData GeometricType Color
1 {'Body_Contour' } {90x1 cell} {90x1 cell} {3x1 double}
2 {'Tumor_Contour'} {21x1 cell} {21x1 cell} {3x1 double}

Add and Modify ROIs of DICOM-RT Contour Data

3 {'Organ" } {21x1 cell} {21x1 cell} {3x1 double}

Plot the updated contour data.

figure
plotContour(contourData)
axis equal

Delete the tumor ROI specified by ROI number 2.

contourData = deleteContour(contourData,?2);
contourData.ROIs

ans=2x5 table

Number Name ContourData GeometricType Color
1 {'Body Contour'} {90x1 cell} {90x1 cell} {3x1 double}
3 {'Organ" } {21x1 cell} {21x1 cell} {3x1 double}

Plot the final contour data.
figure

plotContour(contourData)
axis equal

3-31

3 Reading and Writing Image Data

3-32

Export the modified ROI data to a DICOM metadata structure.

info = convertToInfo(contourData);

Write the metadata to a DICOM-RT structure set file by using the dicomwrite function. If the
DICOM image associated with the ROI contour data is not available, specify the first input argument
value in the dicomwrite function as an empty array. Set the CreateMode name-value argument to
"copy" to copy the metadata to a new DICOM-RT structure set file, rtfile.dcm.

dicomwrite([],"rtfile.dcm",info,CreateMode="copy");
Verify that the new file includes the correct ROI contour data.
info test = dicominfo("rtfile.dcm");

contour test = dicomContours(info test);

contour test.ROIs

ans=2x5 table

Number Name ContourData GeometricType Color
1 {'Body_Contour'} {90x1 cell} {90x1 cell} {3x1 double}
3 {'Organ" } {21x1 cell} {21x1 cell} {3x1 double}
See Also

dicomContours | plotContour | addContour | deleteContour | convertToInfo | dicominfo

Create and Display 3-D Mask of DICOM-RT Contour Data

Create and Display 3-D Mask of DICOM-RT Contour Data

This example shows how to create a binary mask of ROI data stored in the metadata of a DICOM-RT
structure set file, and display the mask as an overlay on the underlying image data.

A DICOM-RT structure set is a DICOM Information Object Definition (IOD) specific to radiotherapy.
The metadata of a DICOM-RT structure set file includes contour data for regions of interest (ROIs)
relevant to radiation treatment planning. The metadata specifies ROI data as boundary coordinates,
with separate contours for each axial slice. This example converts the contours defining a brain
tumor ROI into a single 3-D binary mask. You can display the mask as an overlay by using the
volshow function or the Volume Viewer app.

Load Image Data and Metadata

This example uses a modified subset of data from the BraTS data set [1 on page 3-37] [2 on page 3-
37]. The data includes a brain MRI scan, as well as ROI contour data for a tumor within the scan
region.

Load the brain MRI image volume into the workspace. The image volume is stored in the MAT file
vol 001.mat.

load(fullfile(toolboxdir("images"),"imdata",
"BrainMRILabeled", "images","vol 001.mat"));

Read the metadata from the DICOM-RT structure set file brainMRI rt.dcm, attached to this
example as a supporting file. The file contains contour data for the brain tumor ROI.

info = dicominfo("brainMRI rt.dcm");

Extract ROl Data from DICOM-RT Metadata

Create a dicomContours object containing the ROI contour data stored in the metadata structure
info.

rtContours = dicomContours(info);

Display the ROI information as a table. Each element in the ContourData cell array specifies the xy-
coordinates of the boundary points in one axial slice. The 'Brain Tumor' ROI consists of 56 closed
planar contours.

rtContours.ROIs

ans=1x5 table
Number Name ContourData GeometricType Color

1 {'Brain Tumor'} {56x1 cell} {56x1 cell} {3x1 double}

Plot the contours of the 'Brain Tumor' ROI by using the plotContours object function.

figure
plotContour(rtContours)

3-33

3 Reading and Writing Image Data

3-34

160

140 100

Create 3-D Binary Mask of ROI

Define the spatial referencing for the ROI by creating an imref3d object with the same number of
slices and pixel size as the brain MRI image data. The pixel size is 1-by-1-by-1 mm, meaning that each
pixel of the MRI image data corresponds to a section of the brain with length, width, and height of 1
mm each.

referenceInfo = imref3d(size(vol),1,1,1);

Create a 3-D logical mask of the 'Brain Tumor' ROI. This corresponds to the first ROI index in
rtContours, so specify the ROIindex input as 1. Specify the imref3d object to define spatial
information for the mask.

rtMask = createMask(rtContours,1, referenceInfo);
Display the mask by using the volshow function.

viewer = viewer3d(BackgroundColor="white",BackgroundGradient="off",CameraZoom=1.5);
maskDisp = volshow(rtMask,Parent=viewer);

Create and Display 3-D Mask of DICOM-RT Contour Data

Display ROl Mask as Image Overlay Using volshow
Display the binary tumor mask as an overlay on the MRI image data by using the volshow function.

viewer = viewer3d(BackgroundColor="white",BackgroundGradient="off",CameraZoom=1.5);

volDisp = volshow(vol,OverlayData=rtMask,Parent=viewer,
RenderingStyle="GradientOpacity",GradientOpacityValue=0.8,
Alphamap=1linspace(0,0.2,256),0verlayAlphamap=0.8);

3-35

3 Reading and Writing Image Data

3-36

Display ROl Mask as Image Overlay Using Volume Viewer

You can also visualize the position of the ROI in the 3-D slice planes of the brain MRI image using the
Volume Viewer app. Load the brain as an intensity volume and the tumor mask as a labeled volume
into the Volume Viewer app by using the volumeViewer command.

volumeViewer(vol, rtMask);

To display the mask in the 3-D slice planes of the intensity volume, on the app toolstrip, select Slice
Planes. Use the scroll bars in the three slice panes to change the position of the slice planes in the 3-
D Volume window. For more details about viewing labeled volumes using the Volume Viewer app,
see “Explore 3-D Labeled Volumetric Data with Volume Viewer” on page 4-59.

Create and Display 3-D Mask of DICOM-RT Contour Data

4\ Volume Viewer - Volume Data: imdata & Label Data: rthask - O x
VOLUME VIEWER -
P o &: C_}Spe‘uly Dimensions X-axis units/vx . Vi Vokiia ‘1 [_C)) ™ efalt Layout G
MNew import Import Labeled Hpsampks 1o Cdbe e | LA Labels = Slice Restore Export
W Impo port Lab - ¥ T ; O view Labels i i Shae Background Color r
Seesion | Volume™ Volume * Use Volume Metadata Z-axis|1 units/vx Planes Rendering o
XY Slice 3-D Volume Rendering Editor
[+ Embed Labels in Volume
Labels
Select All Invert Selection
— . .
ooa 1

YZ Slice

Color . || Show Labelis)
Orientation Axes

{IZ Volume

References

[1] Isensee, Fabian, Philipp Kickingereder, Wolfgang Wick, Martin Bendszus, and Klaus H. Maier-
Hein. “Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS
2017 Challenge.” In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,
edited by Alessandro Crimi, Spyridon Bakas, Hugo Kuijf, Bjoern Menze, and Mauricio Reyes,
10670:287-97. Cham: Springer International Publishing, 2018. https://doi.org/
10.1007/978-3-319-75238-9 25.

[2] Medical Segmentation Decathlon. "Brain Tumours." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The BraTS data set is provided by Medical Segmentation Decathlon under the CC-BY-SA 4.0 license.
All warranties and representations are disclaimed. See the license for details. MathWorks® has
modified the subset of data used in this example. This example uses the MRI and label data of one

3-37

https://doi.org/10.1007/978-3-319-75238-9_25
https://doi.org/10.1007/978-3-319-75238-9_25
http://medicaldecathlon.com/
http://medicaldecathlon.com/

3 Reading and Writing Image Data

scan from the original data set. The MRI image data has been converted to a MAT file, and the tumor
label data has been converted to a DICOM-RT structure set file.

See Also
dicomContours | createMask | plotContour | Volume Viewer

3-38

Mayo Analyze 7.5 Files

Mayo Analyze 7.5 Files

Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI data. An Analyze 7.5 data
set consists of two files:

* Header file (filename.hdr) — Provides information about dimensions, identification, and
processing history. You use the analyze75info function to read the header information.

* Image file (filename.img) — Image data, whose data type and ordering are described by the
header file. You use analyze75read to read the image data into the workspace.

Note The Analyze 7.5 format uses the same dual-file data set organization and the same file name
extensions as the Interfile format; however, the file formats are not interchangeable. To learn how to
read data from an Interfile data set, see “Interfile Files” on page 3-40.

The following example calls the analyze75info function to read the metadata from the Analyze 7.5
header file. The example then passes the info structure returned by analyze75info to the
analyze75read function to read the image data from the image file.

info = analyze75info('brainMRI.hdr"');
X = analyze75read(info);

3-39

3 Reading and Writing Image Data

Interfile Files

3-40

Interfile is a file format that was developed for the exchange of nuclear medicine image data. For
more information, see interfileinfo or interfileread.

An Interfile data set consists of two files:

* Header file — Provides information about dimensions, identification and processing history. You
use the interfileinfo function to read the header information. The header file has the .hdr
file extension.

* Image file — Image data, whose data type and ordering are described by the header file. You use
interfileread to read the image data into the workspace. The image file has the .img file
extension.

Note The Interfile format uses the same dual-file data set organization and the same file name
extensions as the Analyze 7.5 format; however, the file formats are not interchangeable. To learn how
to read data from an Analyze 7.5 data set, see “Mayo Analyze 7.5 Files” on page 3-39.

Implement Digital Camera Processing Pipeline

Implement Digital Camera Processing Pipeline

This example shows how to implement a camera processing pipeline that renders an RGB image from
a RAW Bayer-pattern color filter array (CFA) image.

Digital single-lens reflex (DSLR) cameras, and many modern phone cameras, can save data collected
from the camera sensor directly to a RAW file. Each pixel of RAW data is the amount of light captured
by the corresponding camera photosensor. The data depends on fixed characteristics of the camera
hardware, such as the sensitivity of each photosensor to a particular range of wavelengths of the
electromagnetic spectrum. The data also depends on camera acquisition settings, such as exposure
time, and factors of the scene, such as the light source.

Depending on the information available in the metadata for your image, there can be multiple ways to
implement a pipeline that yields aesthetically pleasing results. The example shows one sequence of
operations in a traditional camera processing pipeline using a subset of the metadata associated with

the RAW data.

1 TImport the RAW file contents

2 Linearize the CFA image

3 Scale the CFA data to a suitable range

4 Apply white-balance adjustment

5 Demosaic the Bayer pattern

6 Convert the demosaiced image to the SRGB color space

The example also shows how to create an RGB image from a RAW image when you do not have the
RAW file metadata.

Read RAW File Contents

The RAW files created by a digital camera contain:

* A CFA image recorded by the photosensor of the camera

* Metadata, which contains all information needed to render an RGB image

Read a Bayer-pattern CFA image from a RAW file using the rawread function.

fileName
cfalmage

"colorCheckerTestImage.NEF";
rawread(fileName) ;

List information about the cfaImage variable and display the image.

whos cfalmage
Name Size Bytes C(lass Attributes
cfalmage 4012x6034 48416816 wuintl6

imshow(cfalmage,[])
title("RAW CFA Image")

3-41

3 Reading and Writing Image Data

RAW CFA Image

Read the RAW file metadata using the rawinfo function.
cfaInfo = rawinfo(fileName);

The metadata contains several fields with information used to process the RAW image. For example,
display the contents of the ImageSizeInfo field. The metadata indicates that there are more
columns in the CFA photosensor array than in the visible image. The difference typically arises when
a camera masks a portion of the photosensor to prevent those sections from capturing any light. This
enables an accurate measure of the black level of the sensor.

disp(cfaInfo.ImageSizeInfo)

CFAImageSize: [4012 6080]
VisibleImageSize: [4012 6034]
VisibleImageStartLocation: [1 1]
PixelAspectRatio: 1
ImageRotation: 0
RenderedImageSize: [4012 6034]

The RAW file metadata also includes information that enable the linearization, black level correction,
white balance, and other processing operations needed to convert the RAW data to RGB.

colorInfo = cfaInfo.ColorInfo

struct with fields:
LinearizationTable: [0 1 2 3456 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23

colorInfo

3-42

Implement Digital Camera Processing Pipeline

BlackLevel: [0 0 0 0]
WhitelLevel: [3827 3827 3827 3827]
CameraToXYZ: [3x3 double]

CameraTosRGB: [3x3 double]
CameraAsTakenWhiteBalance: [495 256 256 324]
D65WhiteBalance: [2.1900 0.9286 0.9286 1.0595]

[

ICCProfile: []

Linearize CFA Image

Many cameras apply nonlinear range compression to acquired signals before storing them in RAW
files. Cameras typically store this range compression as a lookup table.

Plot a representative subset of the values in the LinearizationTable field of the image metadata.
Values above the maxLinValue continue to increase linearly.

maxLinValue = 1074;

linTable = colorInfo.LinearizationTable;
plot(0:maxLinValue-1,linTable(1l:maxLinValue))
title("Linearization Table")

Linearization Table
10000 T T T T T T T T T —

9000 |- e -

8000

7000

6000

\

5000

\

4000 - f

3000 [

2000

1000 - |

0 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Processing operations on the digital camera processing pipeline are typically performed on linear
data. To generate linear data, you must reverse the nonlinear range compression. The rawread
function automatically performs this operation and returns linearized light values.

3-43

3 Reading and Writing Image Data

3-44

Scale Pixel Values to Suitable Range

Perform Black Level Correction

RAW images do not have a true black value. Even with the shutter closed, electricity flowing through
the sensors causes nonzero photon counts. Cameras use the value of the masked pixels to compute
the black level of the CFA image. To scale the image, subtract the measured black level from the CFA
image data.

RAW file formats can report this black level in different formats. The RAW file metadata for the image
in this example specifies black level as a vector, with one element per channel of the CFA image.
Other RAW file formats, such as DNG, specify black level as a repeated m-by-n matrix that starts at
the top left corner of the visible portion of the CFA.

Get the black level value of the RAW data from the BlackLevel metadata field.
blackLevel = colorInfo.BlackLevel;

To perform black level correction, first convert the black level vector to a 2-by-2 matrix. Omit this
step for RAW images that specify black level as a matrix.

blackLevel
blackLevel

reshape(blackLevel,[1 1 numel(blackLevel)]);
planar2raw(blackLevel);

Replicate the black level matrix to be the size of the visible image.

repeatDims
blackLevel

cfaInfo.ImageSizeInfo.VisibleImageSize ./ size(blackLevel);
repmat(blackLevel, repeatDims);

Subtract the black level matrix from the CFA image matrix.

cfaImage = cfalmage - blackLevel;

Clamp Negative Pixel Values

To correct for CFA data values less than the black-level value, clamp the values to 0.
cfaImage = max(0,cfalmage);

Scale Pixel Values

RAW file metadata often represent the white level as the maximum value allowed by the data type. If
this white level value is much higher than the highest intensity value in the image, then using this
white level value for scaling results in an image that is darker than it should be. To avoid this, scale
the CFA image using the maximum pixel value found in the image.

cfaImage = double(cfalmage);
maxValue = max(cfaImage(:))
maxValue = 3366

cfaImage = cfalmage ./ maxValue;
Adjust White Balance

White balance is the process of removing unrealistic color casts from a rendered image, such that it
appears closer to how human eyes would see the subject.

Implement Digital Camera Processing Pipeline

Get the white balance values from the metadata. There are two types of white balance metadata
available. This step of the example uses the CameraAsTakenWhiteBalance field scales the color
channels to balance the linear pixel values. The example uses the D65WhiteBalance field later in
the pipeline to adjust the colors to a D65 white point.

whiteBalance = colorInfo.CameraAsTakenWhiteBalance

whiteBalance = 1x4

495 256 256 324

Scale the multipliers so that the values of the green color channels are 1.

glLoc strfind(cfaInfo.CFALayout,"G");
glLoc gLoc(1);
whiteBalance = whiteBalance/whiteBalance(glLoc);

whiteBalance
whiteBalance

= reshape(whiteBalance,[1 1 numel(whiteBalance)]);
= planar2raw(whiteBalance);

Replicate the white balance matrix to be the size of the visible image.

whiteBalance = repmat(whiteBalance, repeatDims);
cfaWB = cfalmage .* whiteBalance;

Convert the CFA image to a 16-bit image.
cfaWB = im2uintl6(cfaWB);

Demosaic

Convert the Bayer-encoded CFA image into a truecolor image by demosaicing. The truecolor image is
in linear camera space.

cfaLayout = cfalnfo.CFALayout;

imDebayered = demosaic(cfaWB,cfalLayout);
imshow(imDebayered)

title("Demosaiced RGB Image in Linear Camera Space")

3-45

3 Reading and Writing Image Data

3-46

Demosaiced RGB Image in Linear Camera Space

Convert from Camera Color Space to RGB Color Space

The metadata enables two options for converting the image from the linear camera space to a
gamma-corrected RGB color space. You can use the CameraToXYZ metadata field to convert the data
from the linear camera space to the RGB color space through the XYZ profile connection space (PCS),
or you can use the CameraTosRGB metadata field to convert the image from the linear camera space
to the RGB color space directly.

Use Profile Connection Space Conversion

Get the transformation matrix between the linear camera space and the XYZ profile connection space
from the CameraToXYZ metadata field. This matrix imposes an RGB order. In other words:

[X,Y,Z]' = CameraToXYZ.*[R,G,B]'

colorInfo.CameraToXYZ

cam2xyzMat

3x3

cam2xyzMat

1.5573 0.1527 0.0794
0.6206 0.9012 -0.2690
0.0747 -0.3117 1.4731

Normalize the cam2xyzMat matrix according to a D65 white point. Get the XYZ normalization values
from the D65WhiteBalance metadata field.

Implement Digital Camera Processing Pipeline

whiteBalanceD65

colorInfo.D65WhiteBalance
whiteBalanceD65 = 1x4

2.1900 0.9286 0.9286 1.0595

The white balance multipliers are ordered according to the CFALayout metadata field. Reorder the
multipliers to match the row ordering of the cam2xyzMat matrix.

cfaLayout = cfalnfo.CFALayout;
wbIdx(1l) = strfind(cfalLayout, "R");

gidx = strfind(cfaLayout,"G");
wbIdx(2) = gidx(1l);

wbIdx(3) = strfind(cfalLayout, "B");
wbCoeffs = whiteBalanceD65 (wbIdx);

cam2xyzMat = cam2xyzMat ./ wbCoeffs;

Convert the image from the linear camera space to the XYZ color space using the imapplymatrix
function. Then, convert the image to the sSRGB color space and apply gamma correction using the
xyz2rgb function.

imXYZ = imapplymatrix(cam2xyzMat,im2double(imDebayered));
srgbPCS = xyz2rgb(imXYZ,OutputType="uintl6");
imshow(srgbPCS)

title("sRGB Image Using PCS")

SRGB Image Using PCS

3-47

3 Reading and Writing Image Data

3-48

Use Conversion Matrix from RAW File Metadata

Convert the image from the linear camera space to the linear RGB color space using the
transformation matrix in the CameraTosRGB metadata field.

colorInfo.CameraTosRGB;
imapplymatrix(cam2srgbMat, imDebayered, "uintl1l6");

cam2srgbMat
imTransform

Apply gamma correction to bring the image from the linear sRGB color space to the SRGB color
space.

srgbTransform = lin2rgb(imTransform);
imshow(srgbTransform)
title("sRGB Image Using Transformation Matrix")

sRGB Image Using Transformation Matrix

Convert RAW to RGB Without Metadata

You can convert RAW data directly to an RGB image using the raw2rgb function. The raw2rgb
function provides comparable results as a custom processing pipeline tailored to your data and
acquisition settings. However, the raw2rgb function does not provide the same fine-tuned precision
and flexibility as a custom pipeline.

Convert the image data in the RAW file to the sRGB color space using the raw2rgb function.

Implement Digital Camera Processing Pipeline

srgbAuto = raw2rgb(fileName);
imshow(srgbAuto)
title("sRGB Image Using raw2rgb Function")

sRGB Image Using raw2rgb Function

Compare the result of the raw2rgb conversion to that obtained using the full camera processing
pipeline using PCS and a transformation matrix.

montage({srgbPCS,srgbTransform, srgbAuto},Size=[1 31);
title("sRGB Image Using PCS, raw2rgb Function, and Transformation Matrix (Left to Right)")

3-49

3 Reading and Writing Image Data

sRGB Image Using PCS, raw2rgb Function, and Transformation Matrix (Left to Right)

See Also
raw2planar | rawinfo | planar2raw | raw2rgb | rawread

More About

. “Process Images Using Image Batch Processor App with File Metadata” on page 2-27

3-50

Work with High Dynamic Range Images

Work with High Dynamic Range Images

Dynamic range refers to the range of brightness levels, from dark to light. The dynamic range of real-
world scenes can be quite high. High dynamic range (HDR) images attempt to capture the whole
tonal range of real-world scenes (called scene-referred), using 32-bit floating-point values to store
each color channel. HDR images contain a high level of detail, close to the range of human vision. The
toolbox includes functions for reading, creating, and writing HDR images. The toolbox also includes
tone-map operators for creating low dynamic range (LDR) images from HDR images for processing
and display.

Read HDR Image

To read an HDR image into the MATLAB workspace, use the hdrread function.
hdr_image = hdrread('office.hdr");

The output image hdr_image is an m-by-n-by-3 image of data type single.

whos
Name Size Bytes Class Attributes
hdr image 665x1000x3 7980000 single

The range of data exceeds the range [0, 1] expected of LDR data.

hdr range = [min(hdr_image(:)) max(hdr _image(:))]

hdr range
1x2 single row vector

0 3.2813

Display and Process HDR Image

Many toolbox functions assume that images of data type single and double are LDR images with
data in the range [0, 1]. Since HDR data is not bound to the range [0, 1] and can contain Inf values,
you must examine the behavior of each function carefully when working with HDR data.

* Some functions clip values outside the expected range before continuing to process the data.
These functions can return unexpected results because clipping causes a loss of information.

* Some functions expect data in the range [0, 1] but do not adjust the data before processing it.
These functions can return incorrect results.

* Some functions expect real data. If your HDR image contains values of Inf, then these functions
can return unexpected results.

* Some functions have no limitations for the range of input data. These functions accept and
process HDR data correctly.

To work with functions that require LDR data, you can reduce the dynamic range of an image using a
process called tone mapping. Tone mapping scales HDR data to the range [0, 1] while attempting to
preserve the appearance of the original image. Tone mapping functions such as tonemap,
tonemapfarbman, and localtonemap give more accurate results than simple linear rescaling such

3-51

3 Reading and Writing Image Data

3-52

as performed by the rescale function. However, note that tone mapping incurs a loss of subtle
information and detail.

To display HDR images, you must perform tone mapping. For an example, see “Display High Dynamic
Range Image” on page 3-53.

Create High Dynamic Range Image

To create an HDR image from a group of low dynamic range images, use the makehdr function. Note

that the low dynamic range images must be spatially registered and the image files must contain
EXIF metadata. Specify the low dynamic range images in a cell array.

hdr_image = makehdr(files);
Write High Dynamic Range Image to File
To write an HDR image from the workspace into a file, use the hdrwrite function.

hdrwrite(hdr, 'filename');

See Also
hdrread | makehdr | hdrwrite | tonemap | tonemapfarbman | Localtonemap

Related Examples
. “Display High Dynamic Range Image” on page 3-53

More About
. “Image Types in the Toolbox” on page 2-3

Display High Dynamic Range Image

Display High Dynamic Range Image

This example shows how to display a high dynamic range (HDR) image. To view an HDR image, you
must first convert the data to a dynamic range that can be displayed correctly on a computer.

Read a high dynamic range (HDR) image, using hdrread. If you try to display the HDR image, notice
that it does not display correctly.

hdr_image = hdrread('office.hdr");
imshow(hdr_image)

Convert the HDR image to a dynamic range that can be viewed on a computer, using the tonemap
function. This function converts the HDR image into an RGB image of class uint8.

rgb = tonemap(hdr_image);

whos
Name Size Bytes C(lass Attributes
hdr_image 665x1000x3 7980000 single
rgb 665x1000x3 1995000 wuint8

Display the RGB image.

imshow(rgb)

3-53

3 Reading and Writing Image Data

See Also
tonemap | tonemapfarbman | Localtonemap

More About
. “Work with High Dynamic Range Images” on page 3-51

3-54

Displaying and Exploring Images

This section describes the image display and exploration tools provided by the Image Processing
Toolbox software.

“Image Display and Exploration Overview” on page 4-2

“Display an Image in Figure Window” on page 4-4

“Display Multiple Images” on page 4-8

“View and Edit Collection of Images in Folder or Datastore” on page 4-12
“Get Started with Image Viewer App” on page 4-18

“Get Pixel Information in Image Viewer App” on page 4-27

“Measure Distance Between Pixels in Image Viewer App” on page 4-34
“Adjust Image Contrast in Image Viewer App” on page 4-37

“Crop Image Using Image Viewer App” on page 4-41

“Explore 3-D Volumetric Data with Volume Viewer App” on page 4-45
“Explore 3-D Labeled Volumetric Data with Volume Viewer” on page 4-59
“Display Interior Labels by Clipping Volume Planes” on page 4-65

“Display Interior Labels by Adjusting Volume Overlay Properties” on page 4-73
“Display Large 3-D Images Using Blocked Volume Visualization” on page 4-82
“View Image Sequences in Video Viewer” on page 4-87

“Convert Multiframe Image to Movie” on page 4-92

“Display Different Image Types” on page 4-93

“Add Color Bar to Displayed Grayscale Image” on page 4-98

“Print Images” on page 4-100

“Manage Display Preferences” on page 4-101

4 Displaying and Exploring Images

Image Display and Exploration Overview

The Image Processing Toolbox software includes two display functions, imshow and imtool. Both
functions work within the graphics architecture: they create an image object and display it in an axes
object contained in a figure object.

imshow is the fundamental image display function. Use imshow when you want to display any of the
different image types supported by the toolbox, such as grayscale (intensity), truecolor (RGB), binary,
and indexed. For more information, see “Display an Image in Figure Window” on page 4-4. The
imshow function is also a key building block for image applications you can create using the toolbox
modular tools. For more information, see “Build Interactive Tools”.

The other toolbox display function, imtool, opens the Image Viewer app, which presents an
integrated environment for displaying images and performing some common image processing tasks.
Image Viewer provides all the image display capabilities of imshow but also provides access to
several other tools for navigating and exploring images, such as scroll bars, the Pixel Region tool, the
Image Information tool, and the Adjust Contrast tool. For more information, see “Get Started with
Image Viewer App” on page 4-18.

In general, using the toolbox functions to display images is preferable to using MATLAB image
display functions image and imagesc because the toolbox functions set certain graphics object
properties automatically to optimize the image display. The following table lists these properties and
their settings for each image type. In the table, X represents an indexed image, I represents a
grayscale image, BW represents a binary image, and RGB represents a truecolor image.

Note Both imshow and imtool can perform automatic scaling of image data. When called with the
syntax imshow(I,"DisplayRange",[]), and similarly for imtool, the functions set the axes CLim
property to [min(I(:)) max(I(:))].CDataMapping is always scaled for grayscale images, so
that the value min(I(:)) is displayed using the first colormap color, and the value max(I(:)) is
displayed using the last colormap color.

4-2

Property Indexed Images Grayscale Images |Binary Images Truecolor Images
CData (Image) Set to the datain X |Set to the datain I |Set to data in BW Set to data in RGB
CDataMapping Set to "direct" Set to "scaled" Set to "direct" Ignored when CData
(Image) is 3-D
CLim (Axes) Does not apply double: [0 1] Setto [0 1] Ignored when CData
uint8: [0 255] is 3-D
uintl6: [0 65535]
Colormap (Figure) |Set to data in map Set to grayscale Set to a grayscale Ignored when CData
colormap colormap whose is 3-D
values range from
black to white
See Also
Related Examples
. “Display an Image in Figure Window” on page 4-4

Image Display and Exploration Overview

“Display Multiple Images” on page 4-8
“Display Different Image Types” on page 4-93

4-3

4 Displaying and Exploring Images

Display an Image in Figure Window

Overview

To display image data, use the imshow function. The following example reads an image into the
workspace and then displays the image in a figure window using the imshow function.

moon = imread("moon.tif");
imshow(moon)

4-4

Display an Image in Figure Window

r

4 Figurel lb
File Edit View Inset Tools Desktop Window Help
Ddde | M| RARKODEA-|S|0E

imi

=)

You can also pass imshow the name of a file containing an image.

imshow("moon.tif");

This syntax can be useful for scanning through images. Note, however, that when you use this syntax,
imread does not store the image data in the workspace. If you want to bring the image into the
workspace, you must use the getimage function, which retrieves the image data from the current

4-5

4 Displaying and Exploring Images

4-6

image object. This example assigns the image data from moon . tif to the variable moon, if the figure
window in which it is displayed is currently active.

moon = getimage;

For more information about using imshow to display the various image types supported by the
toolbox, see “Display Different Image Types” on page 4-93.

Specifying the Initial Image Magnification

By default, imshow attempts to display an image in its entirety at 100% magnification (one screen
pixel for each image pixel). However, if an image is too large to fit in a figure window on the screen at
100% magnification, imshow scales the image to fit onto the screen and issues a warning message.

To override the default initial magnification behavior for a particular call to imshow, specify the
InitialMagnification parameter. For example, to view an image at 150% magnification, use this
code.

pout = imread("pout.tif");
imshow(pout, "InitialMagnification",150)

imshow attempts to honor the magnification you specify. However, if the image does not fit on the
screen at the specified magnification, imshow scales the image to fit. You can also specify the "fit"
as the initial magnification value. In this case, imshow scales the image to fit the current size of the
figure window.

To change the default initial magnification behavior of imshow, set the
ImshowInitialMagnification toolbox preference. To set the preference, open the Image
Processing Toolbox Preferences dialog box by calling iptprefs or, on the MATLAB Home tab, in the

Environment section, click {& Preferences.

When imshow scales an image, it uses interpolation to determine the values for screen pixels that do
not directly correspond to elements in the image matrix. For more information about specifying
interpolation methods, see “Resize an Image” on page 6-2.

Controlling the Appearance of the Figure

By default, when imshow displays an image in a figure, it surrounds the image with a gray border.
You can change this default and suppress the border using the "Border" name-value argument, as
shown in the following example.

imshow("moon.tif","Border","tight")

The following figure shows the same image displayed with and without a border.

Display an Image in Figure Window

i Figure 1 [=|[=][== '-i'-'FigurEE E=nae]
File Edit View Insert Tools Desktop Window Help N File Edit View Insert Tools Desktop Window Help ~
Odde | h|AKODEL- S| 0EH O Dadde M|RALHDEL-|E|0

'Tight!

'Loose’!

The "Border" argument affects only the image being displayed in the call to imshow. If you want all
the images that you display using imshow to appear without the gray border, set the Image
Processing Toolbox "ImshowBorder" preference to "tight". You can also use preferences to
include visible axes in the figure. For more information about preferences, see iptprefs.

See Also

More About
. “Display Multiple Images” on page 4-8

4 Displaying and Exploring Images

Display Multiple Images

4-8

This section describes various ways you can view multiple images at the same time.

Display Multiple Images in Separate Figure Windows

The simplest way to display multiple images at the same time is to display them in separate figure
windows. MATLAB does not place any restrictions on the number of images you can display
simultaneously.

imshow always displays an image in the current figure. If you display two images in succession, the
second image replaces the first image. To view multiple figures with imshow, use the figure
command to explicitly create a new empty figure before calling imshow for the next image. The
following example views the first three frames in an array of grayscale images I.

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:
figure, imshow(I(:,:,:

(:

Display Multiple Images in a Montage

You can view multiple images as a single image object in a figure window using the montage

function. By default, montage scales the images, depending on the number of images and the size of
your screen, and arranges them to form a square. montage preserves the aspect ratio of the original
images. You can specify the size of the thumbnails using the ThumbnailSize name-value argument.

The images in the montage can be of different types and sizes. montage converts indexed images to
RGB using the colormap present in the file.

By default, the montage function does not include any blank space between the images in the
montage. You can specify the amount of blank space between the image using the BorderSize
parameter. You can also specify the color of the space between images using the BackgroundColor
parameter.

The following example shows how to view a sequence of images as a montage.

View Image Sequence as Montage

This example shows how to view multiple frames in a multiframe array at one time, using the
montage function. montage displays all the image frames, arranging them into a rectangular grid.
The montage of images is a single image object. The image frames can be grayscale, indexed, or
truecolor images. If you specify indexed images, they all must use the same colormap.

Create an array of truecolor images.

onion = imread('onion.png');
onionArray = repmat(onion, [1 114 1]);

Display all the images at once, in a montage. By default, the montage function displays the images in
a grid. The first image frame is in the first position of the first row, the next frame is in the second
position of the first row, and so on.

montage(onionArray);

Display Multiple Images

To specify a different number of rows and columns, use the 'size' parameter. For example, to
display the images in one horizontal row, specify the 'size' parameter with the value [1 NaN].
Using other montage parameters you can specify which images you want to display and adjust the
contrast of the images displayed.

montage(onionArray, 'size',[1 NaN]);

Display Images Individually in the Same Figure

You can use the imshow function with the MATLAB subplot function to display multiple images in a
single figure window. For additional options, see “Work with Image Sequences as Multidimensional
Arrays” on page 2-15.

4-9

4 Displaying and Exploring Images

Note The Image Viewer app does not support this capability.

Divide a Figure Window into Multiple Display Regions

subplot divides a figure into multiple display regions. Using the syntax subplot(m,n,p), you
define an m-by-n matrix of display regions and specify which region, p, is active.

For example, you can use this syntax to display two images side by side.

[X1,mapl]=imread("forest.tif");
[X2,map2]=imread("trees.tif");
subplot(1,2,1), imshow(X1,mapl)
subplot(1,2,2), imshow(X2,map2)

FFigure1 o)

File Edit View Inset Tools Desktop Window Help &

Ddde | AREGENIDELEL- 2| 0B ad

Compare a Pair of Images

The imshowpair function displays a pair of images in the same figure window. This display can be
helpful when comparing images. imshowpair supports many visualization methods, including:

4-10

Display Multiple Images

» falsecolor, in which the two images are overlaid in different color bands. Gray regions indicate
where the images have the same intensity, and colored regions indicate where the image intensity
values differ. RGB images are converted to grayscale before display in falsecolor.

* alpha blending, in which the intensity of the display is the mean of the two input images. Alpha
blending supports grayscale and truecolor images.

* checkerboard, in which the output image consists of alternating rectangular regions from the two
input images.

+ the difference of the two images. RGB images are converted to grayscale.

* montage, in which the two images are displayed alongside each other. This visualization mode is
similar to the display using the montage function.

imshowpair uses optional spatial referencing information to display the pair of images.

See Also
imshow | imshowpair | montage

More About
. “Display an Image in Figure Window” on page 4-4
. “Display Different Image Types” on page 4-93

4-11

4 Displaying and Exploring Images

View and Edit Collection of Images in Folder or Datastore

This example shows how to use the Image Browser app to view a collection of images, inspect and
select images to send to another app, and export a subset of the collection to an image datastore.

Open Images in Image Browser
Open the Image Browser app from the MATLAB® toolstrip. On the Apps tab, in the Image

Processing and Computer Vision section, click Image Browser E

4\ Image Browser - o X

4-12

Load images into the app by clicking Add. You can add images that are in a folder excluding
subfolders, in a folder including subfolders, or in an image datastore in the workspace. This example
works with the images in the sample image folder, imdata, and excludes the images in subfolders of
imdata. Therefore, select Folder of images. The app displays a file explorer window. Navigate to
the folder you want to view.

You can also open the app at the command line using the imageBrowser function, specifying the
name of the folder you want to view. For example, to view all the images in the sample image folder,
use this command:

imageBrowser(fullfile(matlabroot, 'toolbox/images/imdata/"))

View and Edit Collection of Images in Folder or Datastore

Image Browser displays thumbnails of all the images in the folder.

|
4\ Image Browser

BROWSE

AL L | | —— o P

G & | De————) o', (» W

Mew Add Preview Image Image 7| export
= Thumbnail Size Viewer Segmenter

| PREVIEW MAGE PROCESSING APPS

mdata : 116 images

RT3 _1m4_ 02

baky Basazrd CANS TATAR

s T A B

Add images to the collection by using the Add button.

8

Cohmatiabitoolboximagesimdata'AT3_ 1m4_01.6F | {5

Delete an image from the collection by right-clicking the image and selecting Remove Selected from
the context menu. You can select a group of images to delete by using Ctrl+click or Shift+click.
Image Browser does not delete images from the file system—it only removes the thumbnails from
the display.

Explore Images in the Collection

To adjust the size of the image thumbnails, use the Thumbnail Size slider in the app toolstrip.

4-13

4 Displaying and Exploring Images

4\ |mage Browser - 0 s
BROWSE
o4 | r— ‘i 8
G |Q [@ @ @ ||
Mew Add Praview Image Calor Image I Export
- Thumbnail Size Viewer Thresholder Segmenter -
FILE THUMBMAILS | PREVIEW MAGE PROCESSING APPS EXPORT | a
imdata : 116 images Q
AT3_Im# 01 ATI Im4 D2 ATI_Imd 03 AT3 Imé 04 ATI Im4 05 ATI_Imd 06 RT3 _Im4 07 ATI Im4 08 AT3 Imd 0S5 RT3 _Imd 10 ., g-ankie

E

eizchw circles

Y ER

saaml-mask handsl hands2

Cmatlabitoolboximagesiimdataibaby jpg | {4

To get a closer look at an image, select the image and click Preview. You can also get a preview by
double-clicking an image. The app displays the image at a higher resolution in a Preview tab. To
explore the image displayed in the Preview tab, use the zoom and pan options visible over the top-
right corner of the image when you pause over the image.

4-14

View and Edit Collection of Images in Folder or Datastore

1
1l Image Browser

AL AL | — e

P=— @ ® @ [|¢

Mew Add Preview Irmage Calor Image T export
- Thumbnail Scze Viewer Theesholder Segmenter -

Size: [3600 2250 3] Classuint8

Clmatiabitoolboximagesiemdataibaby jpg | 43 Kl

You can select more than one image to preview by using Ctrl+click or Shift+click. The first image
appears in the preview panel. Advance and backtrack to the other selected images using the
navigation arrows under the image.

Launch Another App from Image Browser

You can use Image Browser to open a selected image in another app that supports the image data
type and file format:

+ Image Viewer — Explore details of color, grayscale, and binary images

* Color Thresholder — Segment color images according to color values

Image Segmenter — Segment color and grayscale images according to image features
+ Image Region Analyzer — Measure properties of regions in binary images

For example, in the Image Browser app select the blobs binary image. In the app toolstrip, click
Image Region Analyzer. The Image Region Analyzer app opens with the blobs image.

4-15

4 Displaying and Exploring Images

d [—— (- | v
GO m m ¢
Mew Add Preview Image Image " | Expont

= Thumbnail Size Viewer Region .. -

imdata | 116 images

4\ Image Region Analyzer

/

-

Area Eccentricity Equi\rDi:lmeter‘l
35 02829 B
393 | o742 2%
15] 0.9975 | 49t
138 0.1187 133
| 09980 83
58 05154 858,
736 0.1306 30 ﬁf
53| 0.9991 | s
2 09258 158
2| 09258 14
1 0| 1128
2 09258 | 1568
o f,- g PREEE e e]

Export Images to the Workspace or an Image Datastore

To export the entire collection to an image datastore, click Export > All on the app toolstrip and
specify the name of the image datastore.

4 Exportimages into ani. — x

| [+ imdata imdata

oK Cancel

You can export a subset of the collection to an image datastore. Select the images, click Export >
Selected on the app toolstrip, and specify the name of the image datastore. Alternatively, you can
right-click one of the selected images and select Export to workspace from the context menu.

To export an individual image from the folder, right-click the image, select Export image to
workspace from the context menu, and specify the name of the workspace variable.

4-16

View and Edit Collection of Images in Folder or Datastore

4 Exportimage to works.. — b4
| im im
Ok, Cancel
See Also

Image Browser | imageDatastore

More About
. “Getting Started with Datastore”

4-17

4 Displaying and Exploring Images

Get Started with Image Viewer App

In this section...

“Open Image Viewer App” on page 4-19

“Navigate Image in Image Viewer App” on page 4-20
“Get Information about Image Data” on page 4-22
“Modify Image Data” on page 4-24

“Save and Export Results” on page 4-25

The Image Viewer app presents an integrated environment for displaying images and performing
common image processing tasks. The workflow for using Image Viewer typically involves a
combination of these steps:

* Open the app and read an image on page 4-19

* Navigate the image on page 4-20

* Get information about the image data on page 4-22

* Modify the image data on page 4-24

* Save and export results on page 4-25

The figure shows an image displayed in Image Viewer with many of the related tools open and
active.

4-18

Get Started with Image Viewer App

i
{ File Tools Window Help ¥

- = A

. L 1007 Ho AR % File Edit Window Help ~

File Edit Window Help

&A@

BE?

W<I|

:Pixel info: (¢ ¥} Intensity

4

File Edit Window Help

4. Image Information (Image To... — O x
[rata Range Win
Minimum: 0 Mini]
Maximum: o[| M Image details (Image Tool 1 - moon.tif)
Attribute Value
Width {columns) 358
Height {rows) 537
Class uint
Image type intensity
Minimum intensity a
Maximum intensity 253

Metadata (moon._tif)

Pixelinfo: (X, ¥) Intensity Display range: [0 255] Attribute
| S Filerame E-\jobarchive\Bimage\2020 A
I i | | | | | FileModDate 13-Apr-2015 13:23:13
[1] 50 100 150 200 250 FileSize 184288 W
Adjust the histogram above. < >
Click "Adjust Data’ to apply the changes to image data. Adjirst Liata

Note You can also access individual tools outside the Image Viewer app. To do so, display an image
in a figure window using a function such as imshow, then create one or more tools using toolbox
functions. For example, you can build an image processing app with custom layout and behavior
using a combination of individual tools. For more information, see “Interactive Tool Workflow” on
page 5-6

Open Image Viewer App

There are three ways to open the Image Viewer app. In each case, you can select an image from a
variable in the workspace or specify the name of the image file. Image Viewer can open any file that
can be read by imread.

* You can open the Image Viewer app from the command line by using the imtool function. Use
this function when you want to control various aspects of the initial image display, such as the
initial magnification, colormap, or display range. For example, this code opens Image Viewer and
loads the image with file name cameraman. tif.

imtool("cameraman.tif")

4-19

4 Displaying and Exploring Images

4-20

* You can open the Image Viewer app from the Apps tab, under Image Processing and Computer
Vision. To bring image data into Image Viewer from a file name, select Open from the File menu.
To bring image data into Image Viewer from the workspace, select Import from Workspace
from the File menu. Optionally filter the variables in the workspace to show only images of a
desired type, such as binary, indexed, intensity (grayscale), or truecolor (RGB) images.

s

A Import From Workspace Ell =] '@
Fier: | an (M-by-N, M-by-N-by-3) -
“Wariables:
Select a EW ZhExZSE logical -~
variable _} _ S s
from the BEE 384x51Zx3 uint8
K1 301x447 uint8
workspace. Hz Z5Ex350 uinta
mapl Z256x3 double
map? Z56x3 double
moon 537x358 uint8

* You can start a new Image Viewer from within an existing Image Viewer by using the New
option from the File menu.

Note When you specify a file name, Image Viewer does not save the image data in a workspace
variable. However, you can export the image from Image Viewer to the workspace. For more
information, see “Save and Export Results” on page 4-25.

Navigate Image in Image Viewer App

After you open Image Viewer, the image appears in the app window. Image Viewer provides
navigation aids and tools that can help you explore images in detail.

Get Started with Image Viewer App

Action Tools and Navigation Aids Depiction of Tool
See image |To see what portion of the image is & Gieteiiia., =~ O X
overview currently visible when the image is

0 . File Edit Window Help '!
magnified, use the Overview tool. The

Overview tool displays the entire image,
scaled to fit. Superimposed over this view
of the image is a detail rectangle that
indicates which portion of the image is
currently visible in Image Viewer.

&A@

You can pan and zoom the image visible in
the Image Viewer window by moving and
resizing the detail rectangle in the
Overview tool.

To achieve better contrast of the detail
rectangle against the underlying image,
you can change the color of rectangle.
Right-click anywhere inside the rectangle
and select a color from the Set Color
option on the context menu.

To get the current position and size of the
detail rectangle, right-click anywhere
inside the rectangle and select Copy
Position from the context menu. The tool
copies the position as a four-element
vector of the form [xmin ymin width
height] to the clipboard. You can paste
this position vector into the workspace or
another application.

To print the view of the image displayed in
the Overview tool, select the Print to
Figure option from the Overview tool File
menu. See “Print Images” on page 4-100
for more information.

4-21

4 Displaying and Exploring Images

Action Tools and Navigation Aids Depiction of Tool
Magnify To enlarge or shrink an image by
image specifying a scale factor, use the

Magnification option on the Tools menu.

To enlarge or shrink an image by clicking
the image, use the Zoom tool. The tool
centers the new view of the image on the
spot where you clicked.

Note You can also zoom by using the Ctrl
+Plus or Ctrl+Minus keys. These are the
Plus(+) and Minus(-) keys on the
numeric keypad of your keyboard.

When Image Viewer scales an image, it
uses interpolation to determine the values
for screen pixels that do not directly
correspond to elements in the image
matrix. For more information about
interpolation methods used for resizing
images, see imresize.

Pan image |To pan an image that is too large to fit in
the Image Viewer window, use scroll bars
or the Pan tool.

Choose To enhance the visibility of features in 4 Choose Color., — X
image grayscale and indexed images, you can N
colormap change the image colormap using the couren

Choose Colormap tool. You can select a T Ry

MATLAB colormap or a colormap variable || o werispace varissies
from the workspace. You can also create a
colormap by entering a MATLAB

Colormap functions:

command.
Image Viewer does not provide a color peris
) . v
bar. To add a color bar, open the image in :
another figure window. For more Evaluste Colormap: |gray(256)

information, see “Save and Export
Results” on page 4-25.

oK Cancel Help

Get Information about Image Data

Image Viewer provides tools that can help you get information about pixel values and other aspects
of the image data.

4-22

Get Started with Image Viewer App

Tool Description Depiction of Tool
Pixel Get the (x, y) coordinates and the value of
Information |a single pixel under the pointer. For more
tool information, see “Determine Individual

Pixel Values in Image Viewer” on page 4-

27.

Pixel info: (131, 447} 208

Display Determine the display range of grayscale
Range tool |image data. The tool is not enabled for

RGB, indexed, or binary images. For more
information, see “Determine Image
Display Range in Image Viewer” on page
4-32.

Display range: [0 255]

Pixel Region
tool

Get information about a group of pixels.
For more information, see “Determine
Pixel Values in an Image Region” on page
4-28.

File

Edit
BE?

Window Help

|4\ Pixel Region (Image Tool 1)

171

162

168

1649

170

1649

185

174

174

173

170

170

185

176

181

180

147

168

171

178

186

1a8

1649

168

170

1&3

193

196

|

Pixel info: (174, 267) 146

Distance tool

Measure the Euclidean distance between
two pixels. For more information, see
“Measure Distance Between Pixels in
Image Viewer App” on page 4-34

4-23

4 Displaying and Exploring Images

4-24

The Image Information tool always
provides basic information about the
width, height, data type, and image type.
For grayscale and indexed images, this
information includes the minimum and
maximum intensity values.

If you select an image to open in Image
Viewer by specifying a file name, then the
Image Information tool also displays
image metadata. This metadata is the
same information returned by the
imfinfo function or the dicominfo
function.

Tool Description Depiction of Tool
Image Get information about image and image % mogeInformaton (msge ol 1 -
Information |file metadata. e

tOO]_ Attribute Value

Width (columns) ass
Height frows)
Class uintg

Maximum itensity

Metadata (moon.tif)

Attribute
FilehodDate 13-Ap-2015 13:23:43
FileSize 184288
Format i
Formatversion]
with £
Haight a7
BitDepth &

ColerType arayscale

Modify Image Data

Image Viewer provides tools that can help you adjust the image contrast and crop an image.

By default, when you close Image Viewer, the app does not save the modified image data. However,
you can export the modified image to a file or save the modified data in a workspace variable. For
more information, see “Save and Export Results” on page 4-25.

Tool Description Depiction of Tool

Adjust Adjust the contrast of an image by setting
Contrast tool |a window over a histogram of pixel values.
For more information, see “Adjust Image

[o f - e g Ce pom [

Contrast in Image Viewer App” on page 4- -
37. ¢ § »
Window/ Adjust the contrast of an image by
Level tool interacting with the image. For more
information, see “Adjust Image Contrast in
Image Viewer App” on page 4-37.
Crop Image |Crop an image to a rectangular region of
tool interest. For more information, see “Crop

Image Using Image Viewer App” on page
4-41.

Get Started with Image Viewer App

Save and Export Results

Image Viewer enables you to export image data to the workspace, save the image data to file, and
open images in a new figure window. When saving and exporting image data, changes to the display
range are not preserved. If you would like to preserve your changes, then use the imcontrast

function.

Destination

Procedure

Create workspace
variable

There are three ways to create a workspace variable from the image data
in Image Viewer.

* You can use the Export to Workspace option on the Image Viewer
File menu.

» Ifyou start the app by using the imtool function and specify a handle
to the tool, then you can use the getimage function and specify the
handle to the tool. For example, this code opens the image with file
name moon.tif in an Image Viewer then exports the image to the
variable moon.

t = imtool("moon.tif");
moon = getimage(t);

» Ifyou start the app without specifying a handle to the tool, then you can
use the getimage function and specify a handle to the image object
within the figure. For example, this code opens the image with file name
moon.tif in an Image Viewer then exports the image to the variable
moon.

imtool("moon.tif")
moon = getimage(imgca);

Save to file

Use the Save Image tool by selecting the Save as option on the Image
Viewer File menu. This tool enables you to navigate your file system to
determine where to save the file, specify the file name, and choose the file
format.

4 Save Image s
< © A dm s ThisPC 5 Windows (C) v o Search Windo
Organize v New folder =+ @
« O This bC Name Type Size
§ 3D Objects ClientHeslth File folder
I Desktop msys6d File folder
B Documents PerfLogs File folder
perl-5.20.2-muw-025 File folder
¥ Downloads . N
Program Files File folder
MathWorks Program Files (x36) File folder
D Music 556_Logs File folder
=] Pictures TEMP File folder
B Videos Users File folder
2 Windows (C) Windews File folder
= hub [\\mathwor
= devel (mathuc
= ihalahan MYt ©
File name: v
Save astype: Windows Bitmap «
~ Hide Folders Cancel

4-25

4 Displaying and Exploring Images

4-26

Destination Procedure
Open new figure Select the Print to Figure option from the File menu. You can use this
window figure window to see a color bar and print the image. For more

information, see “Add Color Bar to Displayed Grayscale Image” on page 4-
98 and “Print Images” on page 4-100.

See Also
Image Viewer

Related Examples

. “Get Pixel Information in Image Viewer App” on page 4-27

. “Measure Distance Between Pixels in Image Viewer App” on page 4-34
. “Adjust Image Contrast in Image Viewer App” on page 4-37

. “Crop Image Using Image Viewer App” on page 4-41

Get Pixel Information in Image Viewer App

Get Pixel Information in Image Viewer App

In this section...

“Determine Individual Pixel Values in Image Viewer” on page 4-27
“Determine Pixel Values in an Image Region” on page 4-28

“Determine Image Display Range in Image Viewer” on page 4-32

The Image Viewer app provides tools that enable you to see the pixel values and coordinates of
individual pixels and groups of pixels. You can save the pixel location and value information.

Determine Individual Pixel Values in Image Viewer

Image Viewer displays information about the location and value of individual pixels in an image in
the bottom left corner of the tool. The pixel value and location information represent the pixel under
the current location of the pointer. Image Viewer updates this information as you move the pointer
over the image.

The format of the pixel information depends on the image type.

Image Type Pixel Information Example

Intensity (X,Y) Intensity (13,30) 82

Indexed (X,Y) <index> [R G B] (2,6) <4>[0.29 0.05 0.32]
Binary (X,Y) BW (12,1)0

Truecolor (X,Y) [R G B] (19,10) [15 255 10]
Floating point image with CDataMapping |(X,Y) value <index> [R G B] [(19,10) 82 <4> [15 255 10]
property set to direct

The figure shows Image Viewer with pixel location and grayscale pixel value displayed in the Pixel
Information tool.

4-27

4 Displaying and Exploring Images

4-28

4 Image Tool 1 - moon.tif — O et

File Tools Window Help u

QOO0 2 B BANE

FPixel
under the
pointer

Fixel location
and intensity

vaIUE\

Pixel info: (113, 283) 170 Dizplay range: [0 255]

Note You can also obtain pixel value information from a figure with imshow by using the
impixelinfo function.

To save the pixel location and value information displayed, right-click a pixel in the image and choose
the Copy pixel info option. Image Viewer copies the x- and y-coordinates and the pixel value to the
clipboard. You can paste this pixel information into the MATLAB workspace or another application by
right-clicking and selecting Paste from the context menu.

Determine Pixel Values in an Image Region

To view the values of pixels in a specific region of an image displayed in Image Viewer, use the Pixel
Region tool. The Pixel Region tool superimposes a rectangle, called the pixel region rectangle, over
the image displayed in Image Viewer. This rectangle defines the group of pixels that are displayed,
in extreme close-up view, in the Pixel Region tool window.

The figure shows Image Viewer with the Pixel Region tool. Note how the Pixel Region tool includes
its own Pixel Information tool in the display.

Get Pixel Information in Image Viewer App

Pixel Region tool button Pixel Region rectangle e Pixel Region tool

===l |

_‘I-Eﬁl]‘?|@<ﬁf’|@l@l{“?"amn%

ul

. J Pixel Reglun (Image Tool 1) v ---

File Edit Window Help

Pixel info: (178, 288) 140

j

The following sections provide more information about using the Pixel Region tool.

Pixel info: (313, 85) 3 Dizplay range: [0 255]

* “Select a Region” on page 4-30

* “Customize the View” on page 4-30

* “Determine the Location of the Pixel Region Rectangle” on page 4-31
* “Print the View of the Image in the Pixel Region Tool” on page 4-32

Note You can also obtain pixel region information from a figure, such as displayed using imshow, by
using the impixelregion function.

4-29

4 Displaying and Exploring Images

4-30

Select a Region

To start the Pixel Region tool, click the Pixel Region button O in the Image Viewer toolbar or
select the Pixel Region option from the Tools menu. Image Viewer displays the pixel region

rectangle in the center of the target image and opens the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the part of the image that is
currently displayed. To bring the pixel region rectangle back to the center of the part of the image
that is currently visible, click the Pixel Region button again. For help finding the Pixel Region tool in
large images, see “Determine the Location of the Pixel Region Rectangle” on page 4-31.

Using the mouse, position the pointer over the pixel region rectangle. The pointer changes to the
fleur shape, ¢ .

Click the left mouse button and drag the pixel region rectangle to any part of the image. As you move
the pixel region rectangle over the image, the Pixel Region tool updates the pixel values displayed.
You can also move the pixel region rectangle by moving the scroll bars in the Pixel Region tool
window.

Customize the View

To get a closer view of image pixels, use the zoom buttons on the Pixel Region tool toolbar. As you
zoom in, the size of the pixels displayed in the Pixel Region tool increase and fewer pixels are visible.
As you zoom out, the size of the pixels in the Pixel Region tool decrease and more pixels are visible.
To change the number of pixels displayed in the tool, without changing the magnification, resize the
Pixel Region tool using the mouse.

As you zoom in or out, note how the size of the pixel region rectangle changes according to the
magnification. You can resize the pixel region rectangle using the mouse. Resizing the pixel region
rectangle changes the magnification of pixels displayed in the Pixel Region tool.

If the magnification allows, the Pixel Region tool overlays each pixel with its numeric value. For RGB
images, this information includes three numeric values, one for each band of the image. For indexed
images, this information includes the index value and the associated RGB value. If you would rather
not see the numeric values in the display, go to the Pixel Region tool Edit menu and clear the
Superimpose Pixel Values option.

Get Pixel Information in Image Viewer App

| 4. Pixel Region (Image Tool 1)

File | Edit | Window Help o
Deselect to +Eﬂ N Copy Position
:?fj::ie v Superimpose Pixel Values
display

Pixel info: (177, 289) 142

Determine the Location of the Pixel Region Rectangle

To determine the current location of the pixel region in the target image, you can use the pixel
information given at the bottom of the tool. This information includes the x- and y-coordinates of
pixels in the target image coordinate system. When you move the pixel region rectangle over the
target image, the pixel information given at the bottom of the tool is not updated until you move the
cursor back over the Pixel Region tool.

You can also retrieve the current position of the pixel region rectangle by selecting the Copy
Position option from the Pixel Region tool Edit menu. This option copies the position information to
the clipboard. The position information is a vector of the form [xmin ymin width height]. To
paste this position vector into the MATLAB workspace or another application, right-click and select
Paste from the context menu.

The figure shows these components of the Pixel Region tool.

4-31

4 Displaying and Exploring Images

4-32

‘4 Pixel Region (Image Tool 1) — O >
. File = Edit Window Help N
Get position |
of Pixel Copy Position
Region ~ Superimpose Pixel Values
rectangle
Location of
pixel in target
image
Pixel info: (179, 268) 145

Print the View of the Image in the Pixel Region Tool

You can print the view of the image displayed in the Pixel Region tool. Select the Print to Figure
option from the Pixel Region tool File menu. See “Print Images” on page 4-100 for more information.

Determine Image Display Range in Image Viewer

Image Viewer provides information about the display range of pixels in a grayscale image. The
display range is the value of the axes CLim property, which controls the mapping of image CData to
the figure colormap. CLim is a two-element vector [cmin cmax] specifying the CData value to map
to the first color in the colormap (cmin) and the CData value to map to the last color in the colormap
(cmax). Data values in between are linearly scaled.

For grayscale images, Image Viewer displays this information in the Display Range tool at the
bottom right corner of the window. Image Viewer does not show the Display Range tool for indexed,
truecolor, or binary images.

The figure shows an image with display range information in Image Viewer.

Get Pixel Information in Image Viewer App

4 Image Tool 1 - moon. tif — O ot

File Tools Window Help o

QOO ? B ARANOG

Display
Range tool

Poxel info: (X, 1"} Intensity Display range: [0 255]

Note You can also obtain the image display range from a figure, such as displayed using imshow, by
using the imdisplayrange function.

You can change the image contrast and brightness by adjusting the display range. For more
information, see “Adjust Image Contrast in Image Viewer App” on page 4-37.

See Also
Image Viewer | impixelregion | impixelinfo | imdisplayrange

Related Examples

. “Get Started with Image Viewer App” on page 4-18

. “Measure Distance Between Pixels in Image Viewer App” on page 4-34
. “Adjust Image Contrast in Image Viewer App” on page 4-37

. “Crop Image Using Image Viewer App” on page 4-41

4-33

4 Displaying and Exploring Images

Measure Distance Between Pixels in Image Viewer App

4-34

In this section...

“Determine Distance Between Pixels Using Distance Tool” on page 4-34
“Export Endpoint and Distance Data” on page 4-35

“Customize the Appearance of the Distance Tool” on page 4-36

The Image Viewer app enables you to measure the Euclidean distance between two pixels using the
Distance tool. The Distance tool displays the line, the endpoints, and label with the distance
measurement. The tool specifies the distance in data units determined by the XData and YData
properties, which is pixels, by default. You can save the endpoint locations and distance information.

Determine Distance Between Pixels Using Distance Tool

After you open an image in Image Viewer, open the Distance tool by clicking Distance tool button

< in the Image Viewer toolbar or selecting Measure Distance from the Tools menu. For more
information about opening an image in Image Viewer, see “Open Image Viewer App” on page 4-19.

Measure distance with a click-and-drag approach. When you move the pointer over the image, the

pointer changes to cross hairs + . Position the cross hairs at the first endpoint, hold down the mouse
button, drag the cross hairs to the second endpoint, and release the button.

The figure shows a distance line with the line endpoints and distance measurement label.

Measure Distance Between Pixels in Image Viewer App

Distance tool button

4| Image Tool 1 - moon.ti = O et

File Tools Window Ip N

100 ? (e ARAM %

Distance
tool

Pixel info: (X, %) Intensity Dizplay range: [0 255

Note You can also use a Distance tool with a figure, such as displayed using imshow, by using the
imdistline function.

Export Endpoint and Distance Data

To save the endpoint locations and distance information, right-click the Distance tool and choose the
Export to Workspace option from the context menu. The Distance tool opens the Export to
Workspace dialog box. You can use this dialog box to specify the names of the variables used to store

this information.

4-35

4 Displaying and Exploring Images

Point 1
Point 2

Diztance

Y Export to Wor.,, —

point1

point2

distance

0K

Cancel

After you click OK, the Distance tool creates the variables in the workspace, as in the following

example.

whos
Name

distance
pointl
point2

Size

1x1
1x2
1x2

Class Attributes

double
double
double

Customize the Appearance of the Distance Tool

Using the Distance tool context menu, you can customize many aspects of the Distance tool
appearance and behavior. Position the pointer over the line and right-click to access these context
menu options.

» Toggle the distance tool label on and off using the Show Distance Label option.

* Change the color used to display the Distance tool line using the Set color option.

* Constrain movement of the tool to either horizontal or vertical using the Constrain drag option.

* Delete the distance tool object using the Delete option.

See Also

Image Viewer | imdistline

Related Examples
. “Get Started with Image Viewer App” on page 4-18

. “Get Pixel Information in Image Viewer App” on page 4-27

. “Adjust Image Contrast in Image Viewer App” on page 4-37

. “Crop Image Using Image Viewer App” on page 4-41

4-36

Adjust Image Contrast in Image Viewer App

Adjust Image Contrast in Image Viewer App

In this section...

“Adjust Contrast and Brightness using Adjust Contrast Tool” on page 4-37
“Adjust Contrast and Brightness Using Window/Level Tool” on page 4-39

“Make Contrast Adjustments Permanent” on page 4-39

An image lacks contrast when there are no sharp differences between black and white. Brightness
refers to the overall lightness or darkness of an image. Contrast adjustment works by manipulating
the display range of the image. Pixels with value equal to or less than the minimum value of the
display range appear black. Pixels with value equal to or greater than the maximum value of the
display range appear white. Pixels within the display range appear as a smooth gradient of shades of
gray. Adjusting the contrast spreads the pixel values across the display range, revealing much more
detail in the image.

The default display range of an image is determined by the image data type. For instance, the display
range for images with data type uint8 is 0 to 255. If the data range, or actual minimum and
maximum pixel values of the image data, is more narrow than the display range, then the displayed
image does not display all shades of gray from black to white. In this case, you can improve the image
contrast by shrinking the display range to match the data range. To highlight certain image features,
you can further shrink the display range to be less than the data range.

The Image Viewer app offers two tools that enable you to change the contrast or brightness of an
image interactively. The Window/Level tool enables you to change contrast and brightness by simply
dragging the mouse over the image. The Adjust Contrast tool displays a histogram of image pixel
values and graphical representation of the display range so that you can see how the display range
relates to pixel values.

Adjust Contrast and Brightness using Adjust Contrast Tool

After you open an image in Image Viewer, open the Adjust Contrast tool by clicking Adjust

Contrast ¥ in the Image Viewer toolbar. For more information about opening an image in Image
Viewer, see “Open Image Viewer App” on page 4-19.

The Adjust Contrast tool displays a histogram of pixel values and information about the data range.
The data range is a fixed property of the image data and does not change when you adjust the display
range using the Adjust Contrast tool. The Adjust Contrast tool also displays a red-tinted rectangular
box, called a window, overlaid on the histogram. The window directly corresponds to the display
range of the image. The tool also shows the precise values of the precise values of the range and
location of the window on the histogram.

For example, in the figure, the histogram for the image shows that the data range of the image is 7 to
253. The display range is the default display range for the uint8 data type, 0 to 255. Therefore, no
pixels appear as black or white. Further, the histogram shows that many pixel values are clustered in
the middle of the display range, which explains why it is challenging to distinguish between the
medium-gray pixel values.

4-37

4 Displaying and Exploring Images

+

File Tools Window Help Yy Adjust Contrast (Image Toel 1) - O x
DO O0? B RAM fie et Window Help >
Data Range Window Scale Display Range
Minimum: 2| || Minimurm: ol A Width: 255 | @) Match Data Range
Maximum: 253 | Maximum: o55|| A Center: 128 (O Eliminate outiiers: z %
Apply

Pixelinfo: (X, ¥} Intensity Dvis

4-38

L 1
0 50 100 150 200 250

Adjust the histogram above.
Click "Adjust Data® to apply the changes to image data. Adjust Data

To increase the contrast of the image, narrow the range of pixel values. To increase the brightness of
an image, shift the range towards large pixel values. There are three ways to adjust the display range
of the image.

You can adjust the display range interactively by manipulating the window. Adjust the minimum
and maximum value of the display range by clicking and dragging the left and right edges of the
window. Change the position of the window by clicking and dragging the interior of the window.

You can enter specific values for the extent, width, and center of the window. You can also define
these values by clicking the dropper button associated with these fields. When you do this, the
pointer becomes an eye dropper shape. Position the eye dropper pointer over the pixel in the
image that you want to be the minimum (or maximum) value and click the mouse button.

You can let the Adjust Contrast tool scale the display range automatically. When you select the
Match data range option, the tool makes the display range equal to the data range of the image.
When you select the Eliminate outliers option, the tool removes an equal percentage of pixels
from the top and bottom of the display range. By default, the tool eliminates 2% of pixels, in other
words, the top 1% and the bottom 1% of pixels. (You can perform this same operation using the
stretchlim function.)

The display range of the image displayed in the Image Viewer window updates in real time when you
change the display range. Image Viewer also updates the display range values displayed in the lower
right corner of the app window.

For example, in the figure, the window indicates that the display range of the image is 12 to 193.
Bright pixels appear much brighter than in the original image. There is better contrast between
pixels with similar gray values, such as for the pillars and roof of the domed buildings.

Adjust Image Contrast in Image Viewer App

4

File Tools Window Help 4| Adjust Contrast (Image Toal 1) = O s
AHOO© 2 |8 | B AL 4% Fle Edit Window Help u
Data Range Window Scale Dizplay Range
inimum: inimum: Width:
LT ol e 2|2 7 181/ | @ Match Data Range
Maimum: sga || | Maximum: 193| 2 Center: 102/ | | © Eliminate outiiers: 2 [%
Apply
T Y T
1
1
| |
|
|
|
L L il I el
1] 50 100 150 200 250
Adjust the histogram above.
Click "Adjust Data’ to apply the changes to image data. Adjust Data
Pixel info: (X, ¥) Intensity Digplay

Adjust Contrast and Brightness Using Window/Level Tool

To start the Window/Level tool, click the Window/Level * in the Image Viewer toolbar or select the
Window/Level option from the Image Viewer Tools menu.

Move the pointer over the image. The pointer changes to the Window/Level cursor . To adjust the
image contrast, click and drag the mouse horizontally. To adjust image brightness, click and drag the
mouse vertically.

If you also have the Adjust Contrast tool open, then contrast adjustments you make using the
Window/Level tool immediately adjust the window in the Adjust Contrast tool. For example, if you
increase the brightness using the Window/Level tool, then the window in the Adjust Contrast tool
shifts to the right.

When you close the Adjust Contrast tool, the Window/Level tool remains active. To stop the Window/

Level tool, click the Window/Level button ® or any of the navigation buttons in the Image Viewer
toolbar.

Make Contrast Adjustments Permanent

The Adjust Contrast tool and Window/Level tool adjust the values of the pixels used to display the
image in Image Viewer but do not change the actual image data.

When using the Adjust Contrast tool, you can modify pixel values in the image to reflect the contrast
adjustments by clicking the Adjust Data button. When you click the Adjust Data button, the
histogram updates. You can then adjust the contrast again, if necessary. If you have other interactive
modular tool windows open, they will update automatically to reflect the contrast adjustment.

Note The Adjust Data button is unavailable until you make a change to the contrast of the image.

4-39

4 Displaying and Exploring Images

4-40

When you close Image Viewer, the app does not save the modified image data. To save these
changed values, use the Save As option from the Image Viewer File menu to store the modified data
in a file or use the Export to Workspace option to save the modified data in a workspace variable.
For more information, see “Save and Export Results” on page 4-25.

See Also
Image Viewer | imcontrast | imadjust | stretchlim

Related Examples

. “Contrast Enhancement Techniques” on page 8-69

. “Get Started with Image Viewer App” on page 4-18

. “Get Pixel Information in Image Viewer App” on page 4-27

. “Measure Distance Between Pixels in Image Viewer App” on page 4-34

. “Crop Image Using Image Viewer App” on page 4-41

Crop Image Using Image Viewer App

Crop Image Using Image Viewer App

Cropping an image means creating a new image from a part of an original image. The Image Viewer
app enables you to crop an image interactively by using Crop Image tool.

After you open an image in Image Viewer, start the Crop Image tool by clicking Crop Image = | in
the Image Viewer toolbar or by selecting Crop Image from the Image Viewer Tools menu. For
more information about opening an image in Image Viewer, see “Open Image Viewer App” on page
4-19.

When you move the pointer over the image, the pointer changes to cross hairs + . Define the
rectangular crop region by clicking and dragging the mouse over the image. You can fine-tune the
crop rectangle by moving and resizing the crop rectangle using the mouse. Or, if you want to crop a
different region, move to the new location and click and drag again. To zoom in or out on the image
while the Crop Image tool is active, use Ctrl+Plus or Ctrl+Minus keys. Note that these are the
Plus(+) and Minus(-) keys on the numeric keypad of your keyboard.

The figure shows a crop rectangle being defined using the Crop Image tool.

4-41

4 Displaying and Exploring Images

Crop image tool button Crop rectangle
4 Image Tool 1 - mooff tif — O ot
File Tools Windo Help N

BT L EAE HEEHE

Picel info: (X, "} Intensity Display range: [0 255

When you are finished defining the crop region, perform the crop operation. Double-click the left
mouse button or right-click inside the region and select Crop Image from the context menu. Image
Viewer displays the cropped image. If you have other modular interactive tools open, then they will
update to show the newly cropped image.

4-42

Crop Image Using Image Viewer App

i

E]mﬂgeTooll
File Tools Window Help

Pixel info: (X,) Intensity

s

S0 0 ? B¢ | &A% 00%

(=][][]

Dizplay range: [0 255]

By default, if you close Image Viewer, then the app does not save the modified image data. To save
the cropped image, you can use the Save As option from the Image Viewer File menu to store the

modified data in a file or use the Export to Workspace option to save the modified data in the

workspace variable.

See Also
Image Viewer | imcrop

4-43

4 Displaying and Exploring Images

Related Examples

. “Get Started with Image Viewer App” on page 4-18

. “Get Pixel Information in Image Viewer App” on page 4-27

. “Measure Distance Between Pixels in Image Viewer App” on page 4-34
. “Adjust Image Contrast in Image Viewer App” on page 4-37

4-44

Explore 3-D Volumetric Data with Volume Viewer App

Explore 3-D Volumetric Data with Volume Viewer App

This example shows how to look at and explore 3-D volumetric data using the Volume Viewer app.
Volume rendering is highly dependent on defining an appropriate alphamap so that structures in your
data that you want to see are opaque and structures that you do not want to see are transparent. To
illustrate, the example loads an MRI study of the human head into the Volume Viewer app and
explores the data using the visualization capabilities of the Volume Viewer.

* Load Volume Data into the Volume Viewer on page 4-45

* View Volume Data in Volume Viewer on page 4-47

* Adjust View of Volume Data in Volume Viewer on page 4-50

* Refine View with Rendering Editor on page 4-52

* Save Volume Viewer Rendering and Camera Configuration Settings on page 4-57

Load Volume Data into Volume Viewer
This part of the example shows how to load volumetric data into the Volume Viewer app.

Load the MRI data of a human head from a MAT-file into the workspace. The MRI data is a modified
subset of the BraTS data set [1 on page 4-57]. This operation creates a variable named D in your
workspace that contains the volumetric data. Use the squeeze command to remove the singleton
dimension from the data.

load mri
D = squeeze(D);
whos
Name Size Bytes C(lass Attributes
D 128x128x27 442368 uint8
map 89x3 2136 double
siz 1x3 24 double

Open the Volume Viewer app. From the MATLAB® toolstrip, open the Apps tab and under Image

L)

Volume
Processing and Computer Vision, click “®*#" . You can also open the app using the volumeViewer
command.
volumeViewer (D)

Load volumetric data into the Volume Viewer app. Click Import Volume. You can load an image by
specifying its file name or load a variable from the workspace. If you have volumetric data in a
DICOM format that uses multiple files to represent a volume, you can specify the DICOM folder
name. Choose the Import From Workspace option because the data is in the workspace.

4-45

4 Displaying and Exploring Images

W Volume Viewer

VOLUME WVIEWER 3D-DISPLAY

E % Select loading option
Import | Import Labeled
Volume - Volume -

FILE
X Slics

_) VISUALIZ
i Import From File VISUALIZE

_ 1 Import From DICOM Folder

JL

[5]

Import From Workspace

Select the workspace variable in the Import Volume dialog box and click OK.

4 Import Volume — x
Variahles:
Name Size Class
BW A12x512x318 logical
D 128x128x27 uints
") B12x512x313 single
mask H12x512x318 logical
segmentedimage A12x512x318 single
vol 240:240x155 uint16
| oK | | «Cancel |

To start a new instance of the Volume Viewer app, click New Session.

4-46

Explore 3-D Volumetric Data with Volume Viewer App

“

VOLUME WVIEWER 3D-DISPLAY

I:II:Il:I % % ':i:' View Volume a

Mlew Impaort |mport Labeled D
Session (olume - Volume - Volume

FILE MPORT VISUALIZE

XY Slice

Click New Session

When you create a new session, this option deletes all the data currently in the viewer. Click Yes to
create the new session.

New Session x

Starting a new session will cause all the data in existing
session to be deleted.
Do you want to continue?

| Yas |[Cancel]

View Volume Data in Volume Viewer

In this part of the example, you decide how you want to view your data. Volume Viewer offers several
options.

View the volume in the Volume Viewer app. Volume Viewer displays the data as a volume and as slice
planes. The MRI data displayed as a volume is recognizable as a human head. To explore the volume,
zoom in and out on the image using the mouse wheel or a right-click. You can also rotate the volume
by positioning the cursor in the image window, pressing and holding the mouse, and moving the
cursor. You are always zooming or rotating around the center of the volume. The position of the axes
in the Orientation Axes window reflects the spatial orientation of the image as you rotate it.

4-47

4 Displaying and Exploring Images

W Vulurne Viewsr - Volurie Dele: = m] b4
VOLJME VIEWER Velume Viewer displavs
- dara 2s a volume
; - L v
=F] LY LY @ ViewVolume | gl 2] ==
New Imoert Impar: Laseled - 3D | Slice | Restore | Default | Diport
Sasron | Volume w Uslume w Volume | Plansc | Randering - -
FILE MPCRT VISUALIZE EMDERING | LAYDUT | SXPORT =
X2 Blice 3 D Yolume < Rendaring Edilo
[vulure Rengering v
Alpna
‘ L —
"? - T Vi Alphamap | linear v
- T
XY Slice /
=
5 /
2
3
5] /
P
Image Intensity
Calor
£ Slice Axes move to indicate (® Built-in Colormaps [gray =
crientaticn of volume =
(_ Workspace Variables
Move the curser in the window . e
o L

to rctate the volume

n

Lighting

To change the background color used in the display window, open the 3D-Display tab, click

Background Color, and select a color.

4-48

Explore 3-D Volumetric Data with Volume Viewer App

VOLUME VIEWER

= - . . 4 . I
| (®) Specify Dimensions H-axis| 1 units/vx

= Select color for background
. Background Color

9 Upsample To Cube -awiz| 1 units/vx . . Use Background Gradient
Orientation
Z-aas| 1 units/vx Axes . Gradient Color
| SPATIAL REFERENCING ORIENTATION COLOR

XZ Slice Rendering Editor

| Volume Renderir

Alpa
Alphamap |H
Background Color
Standard Colors
=
o
=
j= R
(]
YZ Si it Recent Colors
fZ Slice -0 Volume .
Preview
[
Color

(#) Built-in Colo

() Workspace

View the MRI data as a set of slice planes. Click Slice Planes. You can also zoom in and rotate this
view of the data. Use the scroll functionality in the three slice windows to view individual slices in any
of the planes.

4-49

4 Displaying and Exploring Images

W Volume Viewer - Volume Data: D

VOLUME VIEWER 3D-DISPLAY

— - =
I:II:II:I %} “} (®) View Volume ‘ . E W : :
Mew Import Import Labeled 3D Slice Restore Default | Export View data as slice planes
Session | Volume « Volume « Volume |Planes| Rendering e -
FILE MPORT VISUALIZE RENDERING | LAYOUT | EXPORT ’
XZ Slice . 3-D Volume ©@ | Rendering Editor
Alpha
Scroll in slice windows to
view individual slice planes
Color
lllumination
(4]

Continue using Volume Viewer capabilities until you achieve the best view of your data.
Adjust View of Volume Data in Volume Viewer
In this part of the example, you adjust the view of the volumetric data in the Volume Viewer app.

Click 3D Volume to return to viewing your data as a volume and use the capabilities of Volume
Viewer to get the best visualization of your data. Volume Viewer provides several spatial referencing
options that let you get a more realistic view of the head volume. (The head appears flattened in the
default view.)

* Specify Dimensions—In the 3D-Display tab you can specify the dimensions in the X, Y, and Z
directions.

4-50

Explore 3-D Volumetric Data with Volume Viewer App

W Volume Viewer - Volume Data: D — O *
3D-DISPLAY
® Specify Dimensions H-axis units/vx l . Background Color
v ,
¥-axis units/vx . . Use Background Gradient
Orientation
Axes . Gradient Color
ORIENTATION COLOR a
¢ Rendering Editor
[Volume Rendering

Alpha

Alphamap [finear

XZ Slice k
Select this option and specify size of voxel
e dimensions in X, Y, and Z directions
View impact of change
on visualization

=
©
=
=
Q
L 4
L Image Intensity
Color

gray v

(®) Built-in Colormaps

() Workspace Variables

i
» e -
1k

.

s

lllumination

T
[#] Lighting
]

Upsample To Cube—Volume Viewer calculates a scale factor that makes the number of samples
in each dimension the same as the largest dimension in the volume. This setting can make

anisotropically sampled data appear scaled more correctly.

4-51

4 Displaying and Exploring Images

[@ vour — ™
VIDLUME VIDWER ID-DISP_AY @
(' Specify Dimensions ¥ axs| 1 uritsfc Bl M Eockground Color
. (8 UpsarpleTa Cuse ¥ auis] | uritsf oﬁ:”k't_m | Use Eazkground Gradien:
i 7 ais| +7407 writsivi| | nes || I Gradiont Color
) SLNUNG URIEN AT UN CILUR = |
XZ Clice 3-0 Volume 2 | Rendering Editor ‘
\-'.fol.ima Renderirg |
Select this cption to make the number of samples in Alpha
each dimension the same as the largest dimersion
Alphsmap | linear -
/ /
o 4
XY Sine = /
2
=
o /
//
7
7
Irayge Inlensily
Color
(%) Buill-in Culunmaps I:ulad ¥

4-52

() Werkspace Variebles
.]

ion

[Lightng

* Use Volume Metadata—If the data file includes resolution data in its metadata, Volume Viewer
uses the metadata and displays the volume true to scale. Volume Viewer selects the Use Volume
Metadata option, by default, if metadata is present.

Refine View with Rendering Editor

This part of the example describes how to use the Volume Viewer Rendering Editor to modify your
view of the data. Using the Rendering Editor, you can:

* Choose the overall viewing approach: Volume Rendering, Maximum Intensity Projection, or
Isosurface.

* Modify the alphamap by specifying a preset alphamap, such as ct-bone, or by customizing the
alphamap using the Opacity/Image Intensity curve.

* Specify the colormap used in the visualization.

» Specify the lighting in the visualization.

Choose the Viewing Approach

Volume Viewer offers several viewing approaches for volumes. The Maximum Intensity Projection
(MIP) option looks for the voxel with the highest intensity value for each ray projected through the
data. MIP can be useful for revealing the highest intensity structure within a volume. You can also
view the volume as an Isosurface.

Explore 3-D Volumetric Data with Volume Viewer App

Volume viewing options

Rendering Editor

[Volume Rendering

Volume Rendering

Maximum Intensity Projection

|sosurface

Opacity

Image Intensity

Specify the Alphamap

Volume rendering is highly dependent on defining an appropriate alphamap so that structures you
want to see are opaque and structures you do not want to see are transparent. The Rendering Editor
lets you define the opacity and transparency of voxel values throughout the volume. You can choose
from a set of alphamap presets that automatically achieve certain well-defined effects. For example,
to define a view that works well with CT bone data, select the CT Bone rendering preset. By default,
Volume Viewer uses a simple linear relationship, but each preset changes the curve of the plot to give
certain data value more or less opacity. You customize the alphamap by manipulating the plot directly.

4-53

4 Displaying and Exploring Images

4-54

Rendering Editor

[‘I.-'olurne Rendering

Alpha

Selection of alphamap presets Alphamap [linear v

linear

mri

ct-bone

ct-zoft tissue
ct-lung
ct-coronary

mri-mig

Opacity

ct-mip

Customize the alphamap by

irkd Image Intensity
modifying the curve of the plot

Color

@ Built-in Colormaps [gray v

() Workspace Variables
— 7
» -

Nlumination

Lighting

Explore 3-D Volumetric Data with Volume Viewer App

Specify the Colormap

Color, when used with voxel intensity and opacity, is an important element of volume visualization. In
the Rendering Editor, you can select from a list of predefined MATLAB colormaps, such as jet and
parula. You can also specify a custom colormap that you have defined as a variable in the
workspace. You can also change the colormapping for any colormap by using the interactive color bar
scale. For example, to lighten the color values in a visualization, click on the color bar to create a
circular slider. To modify the colormapping so that more value map to lighter colors, move the slider
to the left. You can create multiple sliders on the color bar to define other colormappings.

4-55

4 Displaying and Exploring Images

=
w

Select a built-in colormap or
specify a colormap variable.

R o b A

U e G

Click colorbar to create circular slider and
move slider to change mapping of values

4-56

]|

Rendering Editor

[‘I.l'olume Rendering

Alphamap [Iinear

Opacity

Image Intensity

Color

() Built-in Colormaps custom v |

() Workspace Variables

C) O
INlumination
Lighting

Explore 3-D Volumetric Data with Volume Viewer App

Modify Lighting Effects

By default, Volume Viewer uses certain lighting effects on the volume display. You can turn off these
lighting effects by clearing the Lighting check box.

Save Volume Viewer Rendering and Camera Configuration Settings

After working in Volume Viewer to achieve the best view of your data, you can save your rendering
settings and camera configuration. Volume Viewer stores this information in a structure, called
config by default, that it writes to the workspace. You can use this structure with the viewer3d and
volshow functions to recreate the view you achieved in Volume Viewer.

To save rendering and camera configuration settings, click Export and click the Rendering and
Camera Configurations option.

&)

Restore
Rendering

REMDERING

@ To save rendering settings, click Export

Default || Export

- -

LAYOUT

Hume

—7| Rendering and Camera Configurations

Export a struct of rendering and camera configurations to be used with "“wolshow” and viewer3d®

Specify the names for the structure that Volume Viewer creates or accept the default names
(sceneConfig) and (objectConfig), then click OK.

4 Export To Workspace — x
Specify variable
names and click 0K . ,
1.r|ewer3d settings | sceneConfig |
vulshnw settings | abjectConfig |

OK][Cancel]

References

[1] Medical Segmentation Decathlon. "Brain Tumours." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The BraTS data set is provided by Medical Segmentation Decathlon under the CC-BY-SA 4.0 license.
All warranties and representations are disclaimed. See the license for details. MathWorks® has

4-57

http://medicaldecathlon.com/
http://medicaldecathlon.com/

4 Displaying and Exploring Images

modified the subset of data used in this example. This example uses the MRI data of one scan from
the original data set, saved to a MAT file.

See Also
Volume Viewer | volshow

Related Examples
. “Explore 3-D Labeled Volumetric Data with Volume Viewer” on page 4-59

4-58

Explore 3-D Labeled Volumetric Data with Volume Viewer

Explore 3-D Labeled Volumetric Data with Volume Viewer

This example shows how to explore 3-D labeled volumetric data using the Volume Viewer app. Using
the app, you can view the labeled volume by itself or view the labels as an overlay on the intensity
volume. To illustrate, the example loads an intensity volume that shows the human brain with labeled
areas that show the location and type of tumors found in the brain.

Load Labeled Volume and Intensity Volume

Load the MRI intensity data of a human brain and the labeled volume from MAT files into the
workspace. The MRI data is a modified subset of the BraTS data set [1]. This operation creates two
variables in the workspace: vol and label.

datadir = fullfile(toolboxdir("images"),"imdata","BrainMRILabeled");
load(fullfile(datadir, "images","vol 001.mat"));
load(fullfile(datadir, "labels","label 001l.mat"));

whos
Name Size Bytes C(lass Attributes
datadir 1x1 230 string
label 240x240x155 8928000 uint8
vol 240x240x155 17856000 uintl6

Open the Volume Viewer app. From the MATLAB toolstrip, open the Apps tab and under Image
Processing and Computer Vision, click Volume Viewer. You can also open the app using the
volumeViewer command.

volumeViewer(vol, label)

Load the labeled volume into the Volume Viewer app. Click Import Labeled Volume to open the
labeled volume. You can load an image in a file name or load a variable from the workspace. (If you
have volumetric data in a DICOM format that uses multiple files to represent a volume, you can
specify the DICOM folder name.) For this example, choose the Import From Workspace option.

4-59

4 Displaying and Exploring Images

Click here to load labeled volume data.
r

W Volume Viewer

VOLUME VIEWE

i,

Import Default
Volume - Volume = -

S — ! & Import From File

_| Import From DICOM Folder

& Import From Workspace

Select the workspace variable associated with the labeled volume data in the Import from
Workspace dialog box and click OK.

[Import Labels — >
Variables
Mame Size Class
label 240x240x155 uint8
Vi 240%240%x155 uint16
Ok Cancel

4-60

Explore 3-D Labeled Volumetric Data with Volume Viewer

View Labeled Volume in Volume Viewer

View the labeled volume in the Volume Viewer app. By default, the Volume Viewer displays the data
as a labeled volume but you can also view it as slice planes. To explore the labeled volume, zoom in
and out on the image using the mouse wheel or a right-click. You can also rotate the volume by
positioning the cursor in the image window, pressing and holding the mouse, and moving the cursor.
You are always zooming or rotating around the center of the volume. The position of the axes in the
Orientation Axes window reflects the spatial orientation of the labeled volume as you rotate it.

View the labeled volume. Control color and opacity of labels.

| |

i Volume Viewer

VOLUME VIEWER

I Y

New Import
Session = Volume

- Label Data: label - m} X
3D-DISPLAY -]

Import Labeled | (8) View Labels Labels | Slice Restore Default | Export
- Volume ~ Planes = Rendering - -

ENDERING | LAYOH EXPOR

‘ Rendering Editol

Labels

_ Se\eciiu [invert Selection |
r

5 Llimon

(]l Label_oot

] Label_002

[Laveloos

Color - [_]Show Label(s)

|*] 3-D Volume Opacity ————————————

Volume

Refine your view of the labeled volume using the Rendering Editor part of the Volume Viewer. You
can use the Rendering Editor to view certain labels and hide others, change the color, and modify
the transparency of the labels. Label 000 is the background and it is typically not visible. When you
select the background label, the Show Labels check box is clear, by default. To select all the visible
labels at once, select the background label and click Invert Selection. To change the color of a label
(or all the labels), select the label in the Rendering Editor and specify the color in the Color
selector. You can also control the transparency of the label using the Opacity slider.

Embed Labeled Volume with Intensity Volume

In this part of the example, you view the labeled volume and the intensity volume in the Volume
Viewer at the same time. Viewing the labeled volume overlaid on the intensity volume can provide
context for the data.

4-61

4 Displaying and Exploring Images

With the labeled volume already in the Volume Viewer, load the intensity volume into the app. Click
Import Volume and choose the Import From Workspace option.

Select Import Volume.

|

W Volume Viewer | Label Data: label

VOLUME VIEWER

| o ®

MNew Import || Import Labeled || (8) view Labels Labels | S
Session | Volume = Volume -

e %, IMport From File -

_1 Import From DICOM Folder

& Import From Workspace

Select the workspace variable associated with the intensity volume in the Import from Workspace

dialog box and click OK.
[Import Volurme — >
Variables
Name Size Class
.Iat:-el '24nx24n:155 -uin'.-.“;
ol 240%240x155 uint16

(]34 Cancel

4-62

Explore 3-D Labeled Volumetric Data with Volume Viewer

The Volume Viewer displays the labeled volume over the intensity volumetric data. By default, the
Volume Viewer displays the label data and the intensity data as volumes but you can also view it as
slice planes. To explore the labeled and intensity volumes, zoom in and out using the mouse wheel or
a right-click. You can also rotate the volumes by positioning the cursor in the image window, pressing

and holding the mouse, and moving the cursor. To view only the intensity volume, and hide the
labeled volume, click View Volume.

View labeled volume and intensity volume together.
1

VOLUME VIEWER

w ‘ﬁ ‘3 '.':," View Volume ‘ ‘ -'. @ 1 \/

New Import Import Labeled | (8) View Labels Labels | Slice Restore Default | Export
Session | Volume - Volume Planes = Rendering b hd
MPORT VISUALIZE RENDERING | LAYO EXPOR
XY Slice XZ Slice

Rendering Editor

Embed Labels in Volume

Labels

| Select All | | Invert Selection
| Labelooo

1l Labei_oot

(| Label_002

OO Labeloos

Color . ["]Show Label(s)

Volume

Threshold

Opacity ——

Refine your view of the labeled volume and the intensity volume using options in the Rendering
Editor. To only view the labeled volume, and hide the intensity volume, clear the Embed Labels in
Volume check box. In the Labels area of the Rendering Editor, you can select any of the labels and
change its color or transparency. Label 000 is the background. By default, the background is set to
black and is not visible. The Show Labels check box is clear. To select all the labels, click on the
background and then click Invert Selection. If the intensity volume is visible, you can modify the
threshold value and transparency using the sliders in the Volume area of the Rendering Editor.

4-63

4 Displaying and Exploring Images

To view the labeled volume and the intensity volume
together, mak&yure View Labels is selecied.

VOLUME VIEWER

. - I —

S -, %‘) lolume ‘ < d/ I v
New Import Import Labeled | (@) %/iew Labels Labels | Slice Restore Default | Export

Session = Volume v Volume ~ Planes = Rendering - -

IMPORT VISUALIZE RENDERING | LavO XPOR

Rendering Editor

To view only the
——
Embed Labels in Volume labeled volume,

clear this check
Labels

box.
| Select All | | Invert Selection |
=] s)
- Select
OV wwveioor o individual label
O Label_002 or labels
O tabeioos
i Determine
Col . Show Label(s) g
it O el visibility of label
3-D Volume or labels.
Control view of
Volume i 2
intensity
Threshold volume
Opacity

References

[1] Medical Segmentation Decathlon. "Brain Tumours." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The BraTS data set is provided by Medical Segmentation Decathlon under the CC-BY-SA 4.0 license.
All warranties and representations are disclaimed. See the license for details. MathWorks® has
modified the subset of data used in this example. This example uses the MRI data of one scan from
the original data set, saved to a MAT file.

See Also
Volume Viewer | volshow

Related Examples
. “Explore 3-D Volumetric Data with Volume Viewer App” on page 4-45

4-64

http://medicaldecathlon.com
http://medicaldecathlon.com

Display Interior Labels by Clipping Volume Planes

Display Interior Labels by Clipping Volume Planes

This example shows how to interactively clip a quadrant of a volumetric image to expose a surface
within the volume.

Display Volumetric Image in Scene

Load a volumetric image and corresponding labels.

dataDir = fullfile(toolboxdir("images"),"imdata","BrainMRILabeled");
load(fullfile(dataDir, "images","vol 001.mat"));
load(fullfile(dataDir, "labels","label 001.mat"));

Create a 3-D scene with a white background color. Display the volume in the scene.

viewer = viewer3d(BackgroundColor="white",BackgroundGradient="o0off");
hVolume = volshow(vol,Parent=viewer);

| [= O

L fri,._f-."h 7)
A I =) =] &
PFOMRAL |

Display Quadrant of Volume
To interactively add a clipping plane, click the clipping plane button in the axes toolbar. The

Viewer3d object adds the clipping plane in a default location and orientation in the center of the
scene.

4-65

4 Displaying and Exploring Images

4-66

:

T

1) b

}(____.-"".-. "H-._.. \’r \

g

You can manipulate the location of the plane using the context menu of the plane, or by interacting
directly with the plane on the screen.
» Translate the plane along the normal vector by clicking and dragging the plane.

* Rotate the plane by clicking and dragging on the push pin on the plane. While rotating, you can
hold down Shift to snap to 45 degree angles.

* Interactively remove a clipping plane by clicking "Remove Plane" in the context menu.

All interactive controls can be restricted using the ClippingInteractions property. You can turn
off clipping interactions entirely using the Interactions property.

Add another clipping plane by clicking the clipping plane button in the axes toolbar again. The colors
of the planes indicate that the planes are aligned with a particular axis. Oblique planes are black and
white. You can add up to six planes in the scene.

Display Interior Labels by Clipping Volume Planes

4 — O >

POURQR

Remove Quadrant of Volume

By default, the Viewer3d object hides all regions that are clipped by any clipping plane. The two
perpendicular clipping planes cause the scene to display only a quadrant of the volume.

To hide only regions that are clipped by all clipping planes, set the ClipIntersection property of
the Viewer3d ohject to false. For these two perpendicular clipping planes, the scene removes the
quadrant of the volume that intersects both planes.

viewer.ClipIntersection = "on";

4-67

4 Displaying and Exploring Images

$EMRAE
WZ e

LT uu |

Add Surface Representing Labeled Object

Create a binary mask for the class with numeric label 3.
label3 = label==3;

Create a Surface object encompassing the binary mask and display the surface in the scene. The
scene applies the clipping planes to the surface.

surf = images.ui.graphics3d.Surface(viewer,Data=1label3,Alpha=1);

4-68

Display Interior Labels by Clipping Volume Planes

Remove Clipping Planes from Surface

By default, the Viewer3d object applies clipping planes to all objects that are children of the object.
To apply different clipping planes to different children, set the GlobalClipping property of the
viewer to "off". The volume and the surface no longer appear clipped because their
ClippingPlanes property is empty.

viewer.GlobalClipping = "off";

4-69

4 Displaying and Exploring Images

4-70

+
O

The ClippingPlanes property of the viewer stores the position and orientation of the global
clipping planes. Copy these values to the ClippingPlanes property of the volume. The volume is
clipped, but the surface object remains intact.

hVolume.ClippingPlanes = viewer.ClippingPlanes;

Display Interior Labels by Clipping Volume Planes

4 /_!_I frhf'..-.‘l ./-" -
PE@IIR QN

Refine Volume Clipping Planes

Notice that the two interactive planes are no longer visible. When GlobalClipping is turned off,
you can interactively manipulate the clipping planes for only one object at a time. The active object
for interactive clipping planes is the object specified by the CurrentObject property of the viewer.
By default, the current object is the most recent object added to the scene, which in this case is the
surface.

To continue modifying the clipping planes of the volume interactively, set the CurrentObject
property of the viewer as the volume. Interacting with the clipping planes impacts the volume and not
the surface.

viewer.CurrentObject = hVolume;

4-71

4 Displaying and Exploring Images

= |:| B

ol iy (2 S

[el £ (=) &5
G'\‘:J S_/SAMA Nl

See Also
viewer3d | volshow | Surface

Related Examples
. “Display Interior Labels by Adjusting Volume Overlay Properties” on page 4-73
. “Explore 3-D Labeled Volumetric Data with Volume Viewer” on page 4-59

4-72

Display Interior Labels by Adjusting Volume Overlay Properties

Display Interior Labels by Adjusting Volume Overlay Properties

This example shows how to reveal labels on the interior of a labeled volumetric image by adjusting
the transparency of the volume.

By default, the volshow function renders the exterior of a volume as opaque. This vizualization is not
very informative when there are labels inside of the volume. To see the labels inside the volume, you
can increase the transparency of the volume or change the rendering style. Using these approaches,
you can see the interior labels and still recognize the details of the exterior surface of the volume.

Display Discrete Labels with Label Overlay Rendering

Load a volumetric image and corresponding labels. The volume has three classes and a background
label, 0.

dataDir = fullfile(toolboxdir("images"),"imdata","BrainMRILabeled");
load(fullfile(dataDir, "images","vol 001.mat"));
load(fullfile(dataDir, "labels","label 001l.mat"));

Display the volume with the labels as an overlay, and zoom in on the volume. The volume appears
opaque with the default visualization settings. When you have labeled data, the default value of the
OverlayRenderingStyle property is "LabelOverlay". This value is appropriate when the labels
are discrete, such as these labels.

hVolume = volshow(vol,OverlayData=label);

viewer = hVolume.Parent;
viewer.CameraZoom = 2;

4-73

4 Displaying and Exploring Images

4-74

Apply Gradient Opacity Rendering Style to Volume

Set the RenderingStyle property of the volume to "GradientOpacity". The gradient opacity
rendering style applies a localized transparency when sequential voxels have similar intensities. The
effect is that regions in the volume with uniform intensity more transparent, while voxels that have
large gradients in intensity around them are relatively more opaque. This rendering style is
particularly helpful when you want to view inside of a volume while still visualizing the defining
features of the volume. You can adjust the amount of transparency using the
GradientOpacityValue property.

hVolume.RenderingStyle = "GradientOpacity";

Display Interior Labels by Adjusting Volume Overlay Properties

The volume is more transparent. However, both the colored labels and the colored background
appear through the volume. To make the labels more distinguishable, change the background color to
white and remove the background gradient.

viewer.BackgroundColor="white";
viewer.BackgroundGradient="off";

4-75

4 Displaying and Exploring Images

Adjust Volume and Label Transparency

The labels inside the volume are now visible, but they are hard to distinguish from the rest of the
volume. Make the volume data more transparent by decreasing the Alphamap property.

hVolume.Alphamap = linspace(0,0.2,256);

4-76

Display Interior Labels by Adjusting Volume Overlay Properties

You can also increase the opacity of the labels by increasing the OverlayAlphamap property.

hVolume.OverlayAlphamap = 0.8;

4-77

4 Displaying and Exploring Images

4-78

Only two labels are easily visible. The third label in yellow is mostly hidden within the red and green
labels, and only a few voxels of yellow are visible on the surface. You can hide individual labels by
adjusting the OverlayAlphamap property. Set all elements of OverlapAlphamap, except for the
element corresponding to the yellow label, to 0. The yellow label corresponds to the value 2 in the
label data and is the third element of the alphamap.

hVolume.OverlayAlphamap = [0 0 0.8 0];

Display Interior Labels by Adjusting Volume Overlay Properties

Display Continuous Labels with Gradient Overlay Rendering

Instead of discrete labels, suppose you want to overlay continuous data over the volume. Continuous
data could be statistical voxel measurements such as heatmaps and activation maps, or image data
from other imaging modalities. In this case, suitable values of the OverlayRenderingStyle are
"VolumeOverlay" and "GradientOverlay".

Load another image modality and overlay it with the original volume data using the
"GradientOverlay" overlay rendering style. Specify the same scene display settings as for the
earlier sections of the example.

vol2 = load(fullfile(dataDir,"images","vol 003.mat"));

vol2 = vol2.vol;

viewerContinuous = viewer3d(BackgroundColor="white",BackgroundGradient="off",CameraZzoom=2);

hVolumeContinuous = volshow(vol,OverlayData=vol2,Parent=viewerContinuous,Alphamap=1linspace(0,0.2
OverlayRenderingStyle="GradientOverlay",RenderingStyle="GradientOpacity");

4-79

4 Displaying and Exploring Images

L

Increase the visibility of the interior labels by decreasing the values of the OverlayAlphamap
property.

hVolumeContinuous.OverlayAlphamap=linspace(0,0.5,256);

4-80

Display Interior Labels by Adjusting Volume Overlay Properties

See Also
viewer3d | volshow

Related Examples

. “Display Interior Labels by Clipping Volume Planes” on page 4-65
. “Explore 3-D Labeled Volumetric Data with Volume Viewer” on page 4-59

4-81

4 Displaying and Exploring Images

Display Large 3-D Images Using Blocked Volume Visualization

4-82

This example shows how to display large 3-D image volumes using a blockedImage object and the
volshow function.

The volshow function typically displays 3-D image volumes stored as numeric arrays. However, large
volumes can require too much memory to store in the MATLAB workspace, or can exceed the size
limitations of graphics hardware. If you do not need to view the full volume at full resolution, you can
downsample the image resolution or crop the volume to your region of interest, but to view the full
volume at full resolution, you can create a blockedImage object and display it using volshow. A
blockedImage object manages large images as a group of smaller, discrete blocks. The
blockedImage object points to an image source, which can be either an in-memory numeric array or
an image file saved outside of MATLAB. When you pass a blockedImage object to volshow, the
function reads and renders the image one block at a time, avoiding out-of-memory issues.

Display Blocked Image Volume

Create a large 500-by-500-by-2500 voxel image volume. If your machine does not have enough
memory to create and store the 2.5 GB volume, decrease imSize before running this example.

imSize = [500 500 2500];

Create a simulated 3-D image of bubbles, V. This can take several minutes.

V = rand(imSize,"single");
BW = false(size(V));

BW(V < 0.000001) = true;
V = bwdist(BW);

V(V <= 20) = 1;

V(V > 20) = 0;

If you try to display V directly, volshow returns an error that the volume is too large. Instead, create
a blockedImage object that points to V and has a block size of 500-by-500-by-500 voxels. In general,
a smaller block size uses less memory, but results in slower rendering times, while a large block size
renders more quickly, but can exceed memory or graphics hardware limitations. For most image
volumes and most hardware, a block size between 300 and 500 voxels in each dimension is
appropriate.

bim = blockedImage(V,BlockSize=[500 500 500]);

Display the blockedImage using volshow. The volshow function reads blocks into memory one at a
time and stitches the individual block renderings to produce the final high-resolution volume
rendering. The function creates a BlockedVolume object, which you can use to query and modify
display properties.

bVol = volshow(bim);

Display Large 3-D Images Using Blocked Volume Visualization

Interact with Blocked Image Volume

You can interact with the volume using the rotate, zoom, and pan tools. When you interact with the
volume, the viewer temporarily switches to a lower rendering resolution while it rerenders each block
in the new view. Zoom in on the volume.

4-83

4 Displaying and Exploring Images

4-84

View Blocked Volume Clipping Planes

You can view inside the blocked image volume using clipping planes. To interactively add a clipping
plane, in the axes toolbar, select the clipping plane button. The viewer rerenders the clipped volume
at full resolution. To improve performance, volshow does not rerender any blocks that are
completely cropped out by the clipping plane. To learn more about working with clipping planes, see
“Display Interior Labels by Clipping Volume Planes” on page 4-65.

Display Large 3-D Images Using Blocked Volume Visualization

Display Multilevel Blocked Image Volumes

A blockedImage object can point to an image with a single resolution level or multiple resolution
levels. You can create a new multilevel blockedImage object from a single resolution
blockedImage object by using the makeMultilevel3D function. Create a multilevel
blockedImage object for the bubbles image. The makeMultilLevel3D function adds several lower
resolution levels to the original data in bim.

multibim = makeMultilLevel3D(bim);

Update the data displayed by the BlockedVolume object bVol to the new multilevel image. For
multilevel blockedImage objects, volshow defaults to dynamically selecting the resolution level to
display based on the figure window size, camera positioning, and the size of the volume. This can
improve rendering speed by showing lower resolution levels when the rendering is too small to see
small details.

bVol.Data = multibim;

You can set a fixed resolution level by setting the ResolutionLevel property of the
BlockedVolume object.

bVol.ResolutionLevel = 4;

4-85

4 Displaying and Exploring Images

4-86

Display File-Backed Blocked Image Volumes

A file-backed blockedImage object points to an image source file saved outside of MATLAB. Use file-
backed blocked images when your image is too large to read into the MATLAB workspace. The
volshow function reads and renders the image data from the file one block at a time. Rendering
performance is best when you read file-backed images from locally stored files. Reading files from
remote servers can significantly increase rendering times.

To control whether volshow stores some, none, or all of the blocks in memory once it reads them
from the file, set the CachingStrategy property. By default, the CachingStrategy is "auto", and
volshow stores a subset of blocks based on the amount of memory available to MATLAB. Storing
blocks in memory improves performance when you interact with the volume or update display
properties, because volshow does not need to reread all of the file data while it rerenders the
volume. You can also set the CachingStrategy to "none" to discard all blocks from memory after
reading, or to "all" to store all blocks in memory. You can also specify CachingStrategy as a
numeric scalar to allocate a specific amount of memory for block storage, in GB.

Allocate approximately 5 GB of CPU memory to visualize the blocked volume bim.

bVol = volshow(bim,CachingStrategy=5);

The volshow function scales the intensity range of a volume using the DataLimits and
DatalLimitsMode properties. By default, the DataLimitsMode value is "auto", and volshow
automatically sets the data limits for scaling. For file-backed blocked volumes that do not have a
resolution level smaller than 512 voxels in all dimensions, volshow scales the data to the range of
the underlying data type. For example, if the ClassUnderlying property value of the blocked image
is "single", then volshow scales the data values to the range [0, 1]. Automatic scaling can result
in poor visualization results. Therefore, if you know the intensity range of your blocked image
volume, specify it directly using the DataLimits property. When you specify DataLimits, the
DatalLimitsMode value automatically changes from "auto" to "manual".

bVol.DataLimits = [0, 1];

See Also
volshow | BlockedVolume Properties | blockedImage | bigimageshow

Related Examples
. “Display Interior Labels by Clipping Volume Planes” on page 4-65

View Image Sequences in Video Viewer

View Image Sequences in Video Viewer

This section describes how to use the Video Viewer app to view image sequences and provides
information about configuring the app.

Open Data in Video Viewer App
This example shows how to view multi-slice volumetric data in Video Viewer.

Load the image sequence into the MATLAB workspace. For this example, load the MRI data from the
file mristack.mat, which is included in the imdata folder. This creates a variable named mristack
in your workspace. The variable is an array of 21 grayscale frames containing MRI images of the
brain. Each frame is a 256-by-256 array of uint8 data.

load mristack

mristack 256x256x21 1276256 uint8

Click Video Viewer in the apps gallery and select the Import from workspace option on the File
menu. You can also call implay, specifying the name of the image sequence variable as an argument.

implay(mristack)

Video Viewer opens, displaying the first frame of the image sequence. Note how Video Viewer
displays information about the image sequence, such as the size of each frame and the total number
of frames, at the bottom of the window.

4 Movie Player — O X
File Tools View Playback Help k]
D@ cBd ® O Qq

M4 4« F D M e

Paused Magnification: 100% :256x256 100% (20 fps) 13/21

Explore Image Sequence Using Playback Controls

To view the image sequence or video as an animation, click the Play button ™ in the Playback toolbar,
select Play from the Playback menu, or press P or the Space bar. By default, Video Viewer plays the
image sequence forward, once in its entirety, but you can view the frames in the image sequence in
many ways, described in this table. As you view an image sequence, Video Viewer updates the
Status Bar at the bottom of the window.

4-87

4 Displaying and Exploring Images

4-88

Viewing Option Playback Control Keyboard
Shortcut

Specify the direction in | -0k the Playback mode button ¥ in the Playback toolbar A
which to play the image | - seject Playback Modes from the Playback menu. You can
sequence. select Forward, Backward, or AutoReverse. As you click the

playback mode button, Video Viewer cycles through these

options and the appearance changes to indicate the current

selection. Video Viewer uses plus (+) and minus (-) signs to

indicate playback direction in the Current Frame display.

When you play a video backwards, the frame numbers

displayed are negative. When you are in AutoReverse mode,

Video Viewer uses plus signs to indicate the forward

direction.
View the sequence Click the Repeat button @9 in the Playback toolbar or select [R
repeatedly. Playback Modes > Repeat from the Playback menu. You

toggle this option on or off.
Jump to a specific frame | cjick the Jump to button £¥ in the Playback toolbar or select |J
in the sequence. Jump to from the Playback menu. This option opens a dialog

box in which you can specify the number of the frame.
Stop the sequence. Click the Stop button ™ in the Playback toolbar or select S

Stop from the Playback menu. This button is only enabled

when an image sequence is playing.
ST RO L Click one of the navigation buttons I M M op the AT
sequence, one frame at ;) . . Page Up/
a time, or jump to the Playback toolbar, in the desired d1rect}on, or select an Page Down
beginning or end of the option, such as Fast Forward or Rewind from the Playback
sequence (rewind). ment. L (last

frame) F

(first frame)

Examine Frame More Closely

Video Viewer supports several tools listed in the Tools menu and on the Toolbar that you can use to
examine the frames in the image sequence more closely.

Viewing Option

Playback Control

pan to change the view.

Zoom in or out on the image, and

zoom and pan buttons are disabled.

Click one of the zoom buttons @l El in the toolbar or select
Zoom In or Zoom Out from the Tools menu. Click the Pan

button @? in the toolbar or select Pan from the Tools menu. If

you click Maintain fit to window button in the toolbar or
select Maintain fit to window or from the Tools menu, the

frame in detail.

Examine an area of the current

select Pixel Region from the Tools menu.

Click the Pixel region button 3 in the Playback toolbar or

View Image Sequences in Video Viewer

Viewing Option Playback Control

E f I Vi e
xport irame to Image Viewer Click the Export to Image Tool button 94 in the Playback

toolbar or select Export to Image Tool from the File menu.
Video Viewer opens an Image Viewer app containing the
current frame.

Specify Frame Rate

To decrease or increase the playback rate, select Frame Rate from the Playback menu, or use the
keyboard shortcut T. The Frame Rate dialog box displays the frame rate of the source, lets you
change the rate at which Video Viewer plays the image sequence or video, and displays the actual
playback rate. The playback rate is the number of frames that Video Viewer processes per second.

4\ Movie Player [1] - Frame Rate X
Frame Rate

Source rate: 20 frames/sec

Desired playback rate: frames/sec

Actual playback rate: Not Available

Frame Drop
] Allow frame drop to achieve desired playback rate

Cancel Help Apply

If you want to increase the actual playback rate, but your system's hardware cannot keep up with the
desired rate, select the Allow frame drop to achieve desired playback rate check box. This
parameter enables Video Viewer to achieve the playback rate by dropping frames. When you select
this option, the Frame Rate dialog box displays several additional options that you can use to specify
the minimum and maximum refresh rates. If your hardware allows it, increase the refresh rate to
achieve a smoother playback. However, if you specify a small range for the refresh rate, the
computed frame replay schedule may lead to a choppy replay, and a warning will appear.

Specify Colormap

To specify the colormap to apply to the intensity values, select Colormap from the Tools menu, or use
the keyboard shortcut C. Video Viewer displays a dialog box that enables you to change the
colormap.

4\ Movie Player [1] - Colormap X

Colormap: ‘gray(ZSG) ~

[] specify range of displayed pixel values [0 to 255]
Min: 0 Max: 255

Cancel Help Apply

Use the Colormap parameter to specify a particular colormap.
If you know that the pixel values do not use the entire data type range, you can select the Specify

range of displayed pixel values check box and enter the range for your data. The dialog box
automatically displays the range based on the data type of the pixel values.

4-89

4 Displaying and Exploring Images

Get Information about an Image Sequence

To view basic information about the image data, click the Video Information button Oin the toolbar
or select Video Information from the Tools menu. Video Viewer displays a dialog box containing
basic information about the image sequence, such as the size of each frame, the frame rate, and the
total number of frames.

4\ Movie Player [1] - Video Information X

Video Info

Source type: Workspace
Source name: mristack
Frame size: 256 H x 256 W
Color format: Intensity

Source data type: uint8
Display data type: uint8
Source rate: 20 fps
Frame count: 21

Configure Video Viewer App

The Configuration dialog box enables you to change the appearance and behavior of the player. To
open the Configuration dialog box, select File > Configuration > Edit. To load a preexisting
configuration set, select File > Configuration > Load.

The Configuration dialog box contains four tabs: Core, Sources, Visuals, and Tools. On each tab,
select a category and then click Properties to view configuration settings.

4 Configuration: Movie Player [1] X
Core Sources Visuals Tools
Name Description
1 General Ul Scope user interface settings
2 Source Ul Common source settings
< >
Properties ... OK Cancel Apply

J

The following table lists the options that are available for each category on every pane.

4-90

View Image Sequences in Video Viewer

Pane

Option Category

Option Descriptions

Core

General Ul

Display the full path check box — Select to display the full
path to the video data source in the title bar. By default,
Video Viewer displays a shortened name in the title bar.

Core

Source Ul

Keyboard commands respect playback mode check box —
Select to make keyboard shortcut keys aware of your
playback mode selection. If you clear this check box, the
keyboard shortcut keys behave as if the playback mode is set
to Forward play and Repeat is set to off.

Recently used sources list parameter — Specifies the
number of sources listed in the File menu.

Sources

Simulink

Load Simulink model if not open check box — You must
have Simulink installed.

Connect scope on selection of: — Signal lines only or
signal lines and blocks. You must have Simulink installed.

Sources

File

Default open file path parameter — Specify the directory
that is displayed in the Connect to File dialog box when you
click File > Open.

Sources

Workspace

There are no options associated with this selection.

Visuals

Video

There are no options associated with this selection.

Tools

Image Tool

Open new Image Tool window for each export check box
— Opens a new Image Viewer for each exported frame.

Tools

Pixel Region

There are no options associated with this selection.

Tools

Image Navigation Tools

There are no options associated with this selection.

Tools

Instrumentation Sets

There are no options associated with this selection.

Save Image Viewer App Configuration Settings

To save your configuration settings for future use, select File > Configuration Set > Save as.

Note By default, Video Viewer uses the configuration settings from the file implay. cfg. If you
want to store your configuration settings in this file, you should first create a backup copy of the file.

4-91

4 Displaying and Exploring Images

Convert Multiframe Image to Movie

To create a MATLAB movie from a multiframe image array, use the immovie function. This example
creates a movie from a multiframe indexed image.

mov = immovie(X,map);
In the example, X is a four-dimensional array of images that you want to use for the movie.

To play the movie, use the implay function. This function opens the multiframe image array in a
Video Viewer app.

implay(mov);

This example loads the multiframe image mri.tif and makes a movie out of it.
mri = uint8(zeros(128,128,1,27));

for frame=1:27

[mri(:,:,:,frame),map] = imread("mri.tif",frame);
end

mov = immovie(mri,map);
implay(mov);

Note To view a MATLAB movie, you must have MATLAB software installed. To make a movie that can
be run outside the MATLAB environment, use the VideoWriter class to create a movie in a standard
video format, such as AVI.

4-92

Display Different Image Types

Display Different Image Types

In this section...

“Display Indexed Images” on page 4-93
“Display Grayscale Images” on page 4-93
“Display Binary Images” on page 4-95

“Display Truecolor Images” on page 4-96

If you need help determining what type of image you are working with, see “Image Types in the
Toolbox” on page 2-3.

Display Indexed Images

To display an indexed image using either imshow function or the Image Viewer app, specify both the
image matrix and the colormap. This sample code uses the variable name X to represent an indexed
image in the workspace, and map to represent the colormap.

imshow(X,map)
or
imtool(X,map)

For each pixel in X, these functions display the color stored in the corresponding row of map. If the
image matrix data is of data type double, the value 1 points to the first row in the colormap, the
value 2 points to the second row, and so on. However, if the image matrix data is of data type uint8
or uint1l6, the value 0 (zero) points to the first row in the colormap, the value 1 points to the second
row, and so on. This offset is handled automatically by the Image Viewer app and the imshow
function.

If the colormap contains a greater number of colors than the image, the functions ignore the extra
colors in the colormap. If the colormap contains fewer colors than the image requires, the functions
set all image pixels over the limits of the colormap's capacity to the last color in the colormap. For
example, if an image of data type uint8 contains 256 colors, and you display it with a colormap that
contains only 16 colors, all pixels with a value of 15 or higher are displayed with the last color in the
colormap.

Display Grayscale Images

To display a grayscale image, call the imshow function or open the Image Viewer app. This
documentation uses the variable name I to represent a grayscale image in the workspace.

Both functions display the image by scaling the intensity values to serve as indices into a grayscale
colormap.

If T is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0 is displayed as white, and
pixel values in between are displayed as shades of gray. If T is uint8, then a pixel value of 255 is
displayed as white. If [is uint16, then a pixel value of 65535 is displayed as white.

Grayscale images are similar to indexed images in that each uses an m-by-3 RGB colormap, but you
normally do not specify a colormap for a grayscale image. MATLAB displays grayscale images by

4-93

4 Displaying and Exploring Images

4-94

using a grayscale system colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems. (See “Display Colors” on
page 16-2 for a detailed explanation.)

Display Grayscale Images with Unconventional Ranges

In some cases, the image data you want to display as a grayscale image could have a display range
that is outside the conventional toolbox range (that is, [0, 1] for single or double arrays, [0, 255]
for uint8 arrays, [0, 65535] for uint16 arrays, or [-32767, 32768] for int16 arrays). For example, if
you filter a grayscale image, some of the output data could fall outside the range of the original data.

To display unconventional range data as an image, you can specify the display range directly, using
this syntax for both the imshow and imtool functions.

imshow(I,"DisplayRange", [low high])
or
imtool(I, "DisplayRange", [low high])

If you use an empty matrix ([]) for the display range, these functions scale the data automatically,
setting Low and high to the minimum and maximum values in the array.

The next example filters a grayscale image, creating unconventional range data. The example calls
imtool to display the image in Image Viewer, using the automatic scaling option. If you execute
this example, note the display range specified in the lower right corner of the Image Viewer window.

I = imread("testpatl.png")
J = filter2([1 2;-1 -2],1)
imtool(J, "DisplayRange",[]

’
’
);

Display Different Image Types

4 Image Tool 1- — O et

File Tools Window Help N

JE00? B QA M%

Unconventional
display range

Pixel info: (94, 150) -50 Dizplay range: [-631 765]

Display Binary Images

In MATLAB, a binary image is of data type logical. Binary images contain only 0's and 1's. Pixels
with the value 0 are displayed as black; pixels with the value 1 are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of data type Logical. Grayscale
images that happen to contain only 0's and 1's are not binary images.

To display a binary image, call the imshow function or open the Image Viewer app. For example, this
code reads a binary image into the MATLAB workspace and then displays the image. The sample code
uses the variable name BW to represent a binary image in the workspace.

BW = imread("circles.png");
imshow (BW)

4-95

4 Displaying and Exploring Images

4-96

Change Display Colors of Binary Image

You might prefer to invert binary images when you display them, so that 0 values are displayed as
white and 1 values are displayed as black. To do this, use the NOT (~) operator in MATLAB. (In this
figure, a box is drawn around the image to show the image boundary.) For example:

imshow (~BW)

You can also display a binary image using the indexed image colormap syntax. For example, the
following command specifies a two-row colormap that displays 0's as red and 1's as blue.

imshow(BW,[1 0 0; 0 0 11)

Display Truecolor Images

Truecolor images, also called RGB images, represent color values directly, rather than through a
colormap. A truecolor image is an m-by-n-by-3 array. For each pixel (r,) in the image, the color is
represented by the triplet (r,c,1:3).

Display Different Image Types

To display a truecolor image, call the imshow function or open the Image Viewer app. For example,
this code reads a truecolor image into the MATLAB workspace and then displays the image. This
sample code uses the variable name RGB to represent a truecolor image in the workspace.

RGB = imread("peppers.png");
imshow (RGB)

Systems that use 24 bits per screen pixel can display truecolor images directly, because they allocate
8 bits (256 levels) each to the red, green, and blue color planes. On systems with fewer colors,
imshow displays the image using a combination of color approximation and dithering. See “Display
Colors” on page 16-2 for more information.

Note If you display a color image and it appears in black and white, check if the image is an indexed
image. With indexed images, you must specify the colormap associated with the image. For more
information, see “Display Indexed Images” on page 4-93.

4-97

4 Displaying and Exploring Images

Add Color Bar to Displayed Grayscale Image

4-98

This example shows how to display a grayscale image with a color bar that indicates the mapping of
data values to colors. Seeing the correspondence between data values and the colors displayed by
using a color bar is especially useful if you are displaying unconventional range data as an image.

Read and display a grayscale image.
I = imread('liftingbody.png"');
Convert the image to data type double. Data is in the range [0, 11].

I = im2double(I);
dataRangeI = [min(I(:)) max(I(:))]

dataRangel = Ix2

0 1

Filter the image using an edge detection filter. The filtered data exceeds the default range [0, 1]
because the filter is not normalized.

h [121;,0600; -1 -2-1];
J = imfilter(I,h);
dataRanged = [min(J(:)) max(J(:))]

dataRange] = 1Ix2

-2.5961 2.5451

Display the filtered image using the full display range of the filtered data. imshow displays the
minimum data value as black and the maximum data value as white.

imshow(J,[])

Use the colorbar function to add the color bar to the image.

colorbar

Add Color Bar to Displayed Grayscale Image

[25

See Also
imshow

More About
. “Display Grayscale Images” on page 4-93

4-99

4 Displaying and Exploring Images

Print Images

4-100

If you want to output a MATLAB image to use in another application (such as a word-processing
program or graphics editor), use imwrite to create a file in the appropriate format. See “Write
Image Data to File in Graphics Format” on page 3-6 for details.

If you want to print an image, use imshow to display the image in a MATLAB figure window. If you
are using Image Viewer, then you must use the Print to Figure option on the File menu. When you
choose this option, Image Viewer opens a separate figure window and displays the image in it. You
can access the standard MATLAB printing capabilities in this figure window. You can also use the
Print to Figure option to print the image displayed in the Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the MATLAB print command or
the Print option from the File menu of the figure window to print the image. When you print from
the figure window, the output includes non-image elements such as labels, titles, and other
annotations.

Graphics Object Properties That Impact Printing

The output reflects the settings of various properties of graphic objects. In some cases, you might
need to change the settings of certain properties to get the results you want. Here are some tips that
could be helpful when you print images:

» Image colors print as shown on the screen. This means that images are not affected by the figure
object's InvertHardcopy property.

* To ensure that printed images have the proper size and aspect ratio, set the figure object's
PaperPositionMode property to auto. When PaperPositionMode is set to auto, the width
and height of the printed figure are determined by the figure's dimensions on the screen. By
default, the value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set (0, "DefaultFigurePaperPositionMode", "auto")

For detailed information about printing with File/Print or the print command, see “Print Figure
from File Menu”. For a complete list of options for the print command, enter help print at the
MATLAB command-line prompt or see the print command reference page.

Manage Display Preferences

Manage Display Preferences

In this section...

“Retrieve Toolbox Preferences” on page 4-101
“Set Toolbox Preferences” on page 4-101

“Control Image Display Using Preferences and Name-Value Arguments” on page 4-101

You can control how Image Processing Toolbox displays images either by using preferences or by
using function name-value arguments. Preferences control the default display settings of all images
for imshow and the Image Viewer app. You can also use name-value arguments, in functions such as
imshow, to override default preferences for individual images.

This page shows you how to use preferences and name-value arguments to control how images

display.

Retrieve Toolbox Preferences

Retrieve the current preference values using one of these options:

* Interactively — Use the Preferences window. To access the window, on the Home tab, in the

Environment section, click & Preferences. You can also open the Preferences window from the
Image Viewer app, under File > Preferences.

* Programmatically — Use the iptgetpref function. For example, this code retrieves the value of
the ImtoolInitialMagnification preference.

iptgetpref("ImtoolInitialMagnification")

ans =

100

Set Toolbox Preferences

Set Image Processing Toolbox preferences using one of these options:

* Interactively — Use the Preferences window. To access the window, on the Home tab, in the

Environment section, click & Preferences. You can also open the Preferences window from the
Image Viewer app, under File > Preferences.

Note In MATLAB Online™, access the imshow display settings in the Preferences window under
MATLAB > Image Display.

* Programmatically — Use the iptsetpref function. For example, this code specifies that, by
default, imshow resize the figure window tightly around displayed images.

iptsetpref("ImshowBorder","tight");

For a complete list of toolbox preferences, see the iptsetpref reference page.

Control Image Display Using Preferences and Name-Value Arguments

4-101

4 Displaying and Exploring Images

This example shows how to control image magnification in the Image Viewer using preferences
versus name-value arguments. Image Processing Toolbox preferences set the default display behavior
for a function. You can use name-value arguments to override the default preference for individual

images.
Display Image Using Factory Default

The imtool function opens images in the Image Viewer app. By default, the app displays images at
the magnification specified by the ImtoolInitialMagnification preference. The original default
value is 100, meaning the app loads images at 100% magnification.

imtool("peppers.png")

File Tools Window Help

QOO0 ? B AN G

Pixel info: (.} [RGB] 100%

Update Default Using Preferences

To display images at 80% magnification by default, update the ImtoolInitialMagnification
value by using the Preferences window or the iptsetpref function. Note that the Image Viewer

now displays images at 80% magnification by default.

iptsetpref("ImtoolInitialMagnification",80);
imtool("peppers.png")

4-102

Manage Display Preferences

File Tools Window Help

1m0 0 7 B @AD

Pl info: (%,) Poeel Value
b B0%

Override Preference Using Name-Value Argument

To display a single image at 50% magnification, without changing the default value, include the
InitialMagnification name-value argument when you call imtool. You do not need to update
the ImtoolInitialMagnification preference.

imtool("peppers.png",InitialMagnification=50)

4-103

4 Displaying and Exploring Images

File Tools Window Help

D800 ? O RAD G

Pixal info: (£,) [R GE] 50%

See Also
Image Viewer | iptprefs | iptgetpref | iptsetpref

4-104

Building GUIs with Modular Tools

This chapter describes how to use interactive modular tools and create custom image processing

applications.

“Interactive Image Viewing and Processing Tools” on page 5-2
“Interactive Tool Workflow” on page 5-6

“Add Scroll Panel to Figure” on page 5-10

“Get Handle to Target Image” on page 5-13

“Create Pixel Region Tool” on page 5-15

“Build App to Display Pixel Information” on page 5-19

“Build App for Navigating Large Images” on page 5-21

“Build Image Comparison Tool” on page 5-24

“Create Angle Measurement Tool Using ROI Objects” on page 5-28

5 Building GUIs with Modular Tools

Interactive Image Viewing and Processing Tools

The toolbox includes several tools that you can use to interact with an image displayed in a MATLAB
figure window. For example, you can use tools to adjust the display of the image, get information
about the image data, and adjust the contrast or crop the image.

You can use the tools independently or in combination. You can create custom image processing apps
that open a combination of tools and initialize their display and interactions. For more information,
see “Interactive Tool Workflow” on page 5-6.

You can also access all tools using the Image Viewer app.

Tool Example Description
Adjust & Adjust Contrast image Too! 1) Displays a histogram of the target image
Contrast tool || fie e wicow e and enables interactive adjustment of
Dete Range widow cortrastand brightness by manipulation
Minimum: 0 Minimum: 0 ;; Width: 55 f Match Data Ran 1 L
Masimum: 22| | Maximum 255 | | Center 29 gh%m n%§e§ ay I a”n'g(“

Apply

Use the imcontrast function to create
the tool in a separate figure window and
T associate it yith an image.
|
|
|
|
|
1

" | ! I I
[50 100 150 200 250
Adjust the histogram above.
Click 'Adjust Data' to apply the changes to image data Adjust Data

Choose [4] Choose Color.. — % Allows you to change the colormap of the
Colormap - target figure. You can select one of the
tool e MATLAB colormaps, select a colormap

® MATLAB colormagp functions variable from the MATLAB workspace, or
O Workspace variables enter a custom MATLAB function.

Colormap functions:

Use the imcolormaptool function to
launch the tool in a separate figure
window.

parula
pink v

Evaluate Colormap: |gray(256)

oK Cancel Help

Crop Image
tool

Displays a draggable, resizable rectangle
on an image. You can move and resize the
rectangle to define the crop region.
Double-click to perform the crop operation
or select Crop Image from the context
menu.

Use the imcrop function to create the tool
and associate it with an image.

5-2

Interactive Image Viewing and Processing Tools

Tool Example Description
Display Displays the display range values of the
Range tool associated image.

Display range: [0 255]

Use the imdisplayrange function to
create the tool, associate it with an image,
and embed it in a figure or panel.

Distance tool

Displays a draggable, resizable line on an
image. Superimposed on the line is the
distance between the two endpoints of the
line. The distance is measured in units
specified by the XData and YData
properties, which is pixels by default.

Use the imdistline function to create
the tool and associate it with an image.

Image S ET———— - Displays basic attributes about the target
Information ||,... cuse i 1o 1-motn image. If the image displayed was
tool I T specified as a graphics file, the tool
ey = displays any metadata that the image file
e might contain.
— Use the imageinfo function to create the
o . tool in a separate figure window and
—— . associate it with an image.
Magnificatio Creates a text edit box containing the
n box current magnification of the target image.

80%

Users can change the magnification of the
image by entering a new magnification
value.

Use immagbox to create the tool,
associate it with an image, and embed it in
a figure or panel.

Note The target image must be contained
in a scroll panel.

5-3

5 Building GUIs with Modular Tools

Tool

Example

Description

Overview
tool

4. Overview (Ima...

File Edit Window Help

&A@

Displays the target image in its entirety
with the portion currently visible in the
scroll panel outlined by a rectangle
superimposed on the image. Moving the
rectangle changes the portion of the
target image that is currently visible in the
scroll panel.

Use imoverview to create the tool in a
separate figure window and associate it
with an image.

Use imoverviewpanel to create the tool
in a panel that can be embedded within
another figure or panel.

Note The target image must be contained
in a scroll panel.

Pixel
Information
tool

Pel info: (131, 447) 208

Displaystinformation about the pixel the
use is over in the target image.

ixelinfo to create the tool,
it with an image, and display it
e or panel.

If you want to display only the pixel
values, without the Pixel info label, use
impixelinfoval.

Pixel Region
tool

File Edit Window Help
BE?

4| Pixel Region (Image Tool 1)

171

162

153

158

163

168

169

170

169

165

163

159

161

174

174

173

170

170

147

162

165

176

181

180

147

168

164

164

171

178

186

1a8

169 | 168 | 166

165

170

1&3

193

196

|

Pixelinfo: (174, 267) 146

Display pixel values for a specified region
in the target image.

Use impixelregion to create the tool in
a separate figure window and associate it
with an image.

Use impixelregionpanel to create the
tool as a panel that can be embedded
within another figure or panel.

Interactive Image Viewing and Processing Tools

Tool

Example

Description

Save Image 4] Save Image

tool

« v 4 > ThisPC » Windows (C) -
Organize * New folder
~ [This PC A Mame Date modified
J 3D Objects ClientHealth
[Desktop msys6d
Perflags

& Documents
perl-5.20.2-mw-025

¥ ounlonts Program Files
MathWorks Program Files (x26)

b wusic 556 Logs

=] Pictures TEMe

B videos Users

i, Windows (C) Windows

= hub (\mathwor
= devel (\\mathwe

= thalnhan Al mat ¥

Display the Save
the windew; navi

directory, specify
image, and choos
'Store the image.

le folder

Use imsave to ¢
'Separate figure v

le fold:
aith an image.
le folder

le folder

File name:

Save astype: | Windows Bitmap

Concel

Image dialog window. In
gate to the desired

the name of the output
e the file format used to

reate the tool in a
vindow and associate it

Scroll Panel |5 ggmer = Display target image in a scrollable panel.
too}- File Edit View Insett Tools Desktop Window Help ~ .
NEdalLlaaoDaL- 8] » Use imscrollpanel to add a scroll panel
; to an image displayed in a figure window.
LN
See Also
More About

“Interactive Tool Workflow” on page 5-6
“Get Started with Image Viewer App” on page 4-18

3-5

5 Building GUIs with Modular Tools

Interactive Tool Workflow

In this section...

“Display Target Image in Figure Window” on page 5-6
“Create the Tool” on page 5-6

“Position Tools” on page 5-7

“Add Navigation Aids” on page 5-8

“Customize Tool Interactivity” on page 5-8

Using the interactive tools typically involves the following steps.

Display Target Image in Figure Window

Display the image to be processed (called the target image) in a MATLAB figure window. The imshow
function is recommended because it optimizes figure, axes, and image object properties for image
display, but you can also use the image or imagesc functions.

Some of the tools add themselves to the figure window containing the image. Prevent the tools from
displaying over the image by including a border. If you are using the imshow function, then make
sure that the Image Processing Toolbox ImshowBorder preference is set to "loose" (this is the
default setting).

Create the Tool

After you display an image in a figure window, create one or more tools using the corresponding tool
creation functions. For a list of available tools, see “Interactive Image Viewing and Processing Tools”
on page 5-2. The functions create the tools and automatically set up the interactivity connection
between the tool and the target image.

Associate Tool with Target Image

When you create a tool, you can specify the target image or you can let the tool pick a suitable target
image.

* To specify the target image, provide a handle to the target image as an input argument to the tool
creation function. The handle can be a specific image object, or a figure, axes, or panel object that
contains an image.

* To let the tool pick the target image, call the tool creation function with no input arguments. By
default, the tool uses the image in the current figure as the target image. If the current figure
contains multiple images, then the tool associates with the first image in the figure object's
children (the last image created). Note that not all tools offer a no-argument syntax.

Some tools can work with multiple images in a figure. These are impixelinfo, impixelinfoval,
and imdisplayrange.

Specify Parent of Tool

When you create a tool, you can optionally specify the object that you want to be the parent of the
tool. By specifying the parent, you determine where the tool appears on your screen. Using this

Interactive Tool Workflow

syntax of the tool creation functions, you can add the tool to the figure window containing the target
image, open the tool in a separate figure window, or create some other combination.

Specifying the parent is optional. When you do not specify the parent, the tools use default behavior.

* Some of the smaller tools, such as the Display Range tool and Pixel Information tool, use the
parent of the target image as their parent, inserting themselves in the same figure window as the
target image.

* Other tools, such as the Adjust Contrast tool and Choose Colormap tool, open in separate figures
of their own.

* Two tools, the Overview tool and Pixel Region tool, have different creation functions for specifying
the parent figure. Their primary creation functions, imoverview and impixelregion, open the
tools in a separate figure window. To specify a different parent, you must use the
imoverviewpanel and impixelregionpanel functions. For an example, see “Create Pixel
Region Tool” on page 5-15.

Note The Overview tool and the Pixel Region tool provide additional capabilities when created in
their own figure windows. For example, both tools include zoom buttons that are not part of their
panel versions.

Position Tools

Each tool has default positioning behavior. For example, the impixelinfo function creates the tool
as a panel object that is the full width of the figure window, positioned in the lower left corner of the
target image figure window.

Because the tools are constructed from graphics objects, such as panel objects, you can change their
default positioning or other characteristics by setting properties of the objects. To specify the position
of a tool or other graphics object, set the Position property as a four-element position vector [left
bottom width height]. The values of left and bottom specify the distance from the lower left
corner of the parent container object, such as a figure. The values of width and height specify the
dimensions of the object.

When you specify a position vector, you can specify the units of the values in the vector by setting the
value of the Units property of the object. To allow better resizing behavior, use normalized units
because they specify the relative position of the tool, not the exact location in pixels.

For example, when you first create an embedded Pixel Region tool in a figure, it appears to take over
the entire figure because, by default, the position vectoris setto [0 @ 1 1], in normalized units.
This position vector tells the tool to align itself with the bottom left corner of its parent and fill the
entire object. To accommodate the image and the Pixel Information tool and Display Range tools,
change the position of the Pixel Region tool in the lower half of the figure window, leaving room at the
bottom for the Pixel Information and Display Range tools. Here is the position vector for the Pixel
Region tool.

set(hpixreg,"Units","normalized", "Position",[0 .08 1 .4])

To accommodate the Pixel Region tool, reposition the target image so that it fits in the upper half of
the figure window, using the following position vector. To reposition the image, you must specify the
Position property of the axes object that contains it; image objects do not have a Position
property.

5-7

5 Building GUIs with Modular Tools

set(hax, "Units","normalized","Position",[0 0.5 1 0.5])

For an example, see “Create Pixel Region Tool” on page 5-15.

Add Navigation Aids

The toolbox includes tools that you can use to add navigation aids to a GUI application.

The scroll panel is the primary navigation tool and is a prerequisite for the other navigation tools.
When you display an image in a scroll panel, the tool displays only a portion of the image, if it is too
big to fit into the figure window. When only a portion of the image is visible, the scroll panel adds
horizontal and vertical scroll bars, to enable viewing of the parts of the image that are not currently
visible.

Once you create a scroll panel, you can optionally add the other navigation tools: the Overview tool
and the Magnification tool. The Overview tool displays a view of the entire image, scaled to fit, with a
rectangle superimposed over it that indicates the part of the image that is currently visible in the
scroll panel. The Magnification Box displays the current magnification of the image and can be used
to change the magnification.

Adding a scroll panel to an image display changes the relationship of the graphics objects used in the
display. For more information, see “Add Scroll Panel to Figure” on page 5-10.

Note The toolbox navigation tools are incompatible with standard MATLAB figure window navigation
tools. When using these tools in a GUI, suppress the toolbar and menu bar in the figure windows to
avoid conflicts between the tools.

Customize Tool Interactivity

When you create a tool and associate it with a target image, the tool automatically makes the
necessary connections between the target image and the tool.

Some tools have a one-way connection to the target image. These tools get updated when you
interact with the target image, but you cannot use the tool to modify the target image. For example,
the Pixel Information tool receives information about the location and value of the pixel currently
under the pointer.

Other tools have a two-way connection to the target image. These tools get updated when you
interact with the target image, and you can update the target image by interacting with the tools. For
example, the Overview tool sets up a two-way connection to the target image. For this tool, if you
change the visible portion of the target image by scrolling, panning, or by changing the
magnification, then the Overview tool changes the size and location of the detail rectangle to match
the portion of the image that is now visible. Conversely, if you move the detail window in the
Overview tool, then the tool updates the visible portion of the target image in the scroll panel.

The tools accomplish this interactivity by using callback properties of the graphics objects. For
example, the figure object supports a WindowButtonMotionFcn callback that executes whenever
the mouse button is depressed. You can customize the connectivity of a tool by using the application
programmer interface (API) associated with the tool to set up callbacks to get notification of events.
For more information, see “Create Callbacks for Graphics Objects” and “Overview Events and
Listeners”. For an example, see “Build Image Comparison Tool” on page 5-24.

Interactive Tool Workflow

For example, the Magnification box supports a single API function: setMagnification. You can use
this API function to set the magnification value displayed in the Magnification box. The Magnification
box automatically notifies the scroll panel to change the magnification of the image based on the
value. The scroll panel also supports an extensive set of API functions. To get information about these
APIs, see the reference page for each tool.

See Also

Related Examples

. “Create Pixel Region Tool” on page 5-15

. “Build App for Navigating Large Images” on page 5-21
. “Build App to Display Pixel Information” on page 5-19

. “Build Image Comparison Tool” on page 5-24
More About
. “Interactive Image Viewing and Processing Tools” on page 5-2

. “Add Scroll Panel to Figure” on page 5-10

5-9

5 Building GUIs with Modular Tools

Add Scroll Panel to Figure

The primary navigation tool of a figure is a scroll panel. When you display an image in a scroll panel,
the tool displays only a portion of the image, if it is too big to fit into the figure window. When only a
portion of the image is visible, the scroll panel adds horizontal and vertical scroll bars, to enable
viewing of the parts of the image that are not currently visible.

Scrolluble imnge

Seroll punel

»

Slider

Slider

When you display an image in a scroll panel, it changes the object hierarchy of your displayed image.
This diagram illustrates the typical object hierarchy for an image displayed in an axes object in a
figure object.

Figure

hxes

| mage

Object Hierarchy of Image Displayed in a Figure

When you call the imscrollpanel function to put the target image in a scrollable window, this
object hierarchy changes. imscrollpanel inserts a new object into the hierarchy between the
figure object and the axes object containing the image. The figure shows the object hierarchy after
the call to imscrollpanel.

5-10

Add Scroll Panel to Figure

Figure

imscrollpanel

Axes

Image

Object Hierarchy of Image Displayed in Scroll Panel

After you add a scroll panel to a figure, you can change the image data displayed in the scroll bar by
using the replaceImage function in the imscrollpanel APIL

The scroll panel navigation tool is not compatible with the figure window toolbar and menu bar. When
you add a scroll panel to an image displayed in a figure window, suppress the toolbar and menu bar
from the figure. This sample code demonstrates one way to do this.

hfig = figure("Toolbar","none","Menubar","none");

himage = imshow("foggysfl.jpg");
hpanel = imscrollpanel(hfig,himage);
See Also

imscrollpanel | immagbox | imoverview

Related Examples
. “Build App for Navigating Large Images” on page 5-21

5-11

5 Building GUIs with Modular Tools

More About

. “Interactive Image Viewing and Processing Tools” on page 5-2

5-12

Get Handle to Target Image

Get Handle to Target Image

This example shows several ways to get the handle to the image displayed in a figure window,

referred to as the target image. This can be useful when creating apps with the modular interactive
tools.

Get the handle when you initially display the image in a figure window using the imshow syntax that
returns a handle.

hfig = figure;
himage = imshow('moon.tif")

5-13

5 Building GUIs with Modular Tools

himage =
Image with properties:

CData: [537x358 uint8]
CDataMapping: 'scaled'

Show all properties

Get the handle after you have displayed the image in a figure window using the imhandles function.
You must specify a handle to the figure window as a parameter.

himage2 = imhandles(hfig)

himage2 =
Image with properties:

CData: [537x358 uint8]
CDataMapping: 'scaled'

Show all properties

See Also
imhandles

More About

. “Interactive Tool Workflow” on page 5-6

5-14

Create Pixel Region Tool

Create Pixel Region Tool

This example shows how to create a Pixel Region tool in a separate figure window and embedded in
an existing figure window.

Create Pixel Region Tool in Separate Figure Window

Read an image into the workspace.

I = imread("pout.tif");

Display the image in a figure window. Return a handle to the target image, himage.
himage = imshow('pout.tif');

To create the Pixel Region tool in a separate window, use the impixelregion function.

hpixreg = impixelregion(himage);

5-15

5 Building GUIs with Modular Tools

F'i:-c-eIFfegi-:nn (Figure 1) | = || (=] || £3 |
File Edit Window Help o
Ba?

Pixel info: (X, % Pixel Value

Embed Pixel Region Tool in Existing Figure

Create a new figure window and return a handle to the figure.
fig = figure;

Create an axes and display the target image in the axes.

ax = axes;
img = imshow(I);

To create the Pixel Region tool in the same figure as the target image, use the
impixelregionpanel function. Specify the target image's parent figure, fig, as the parent of the
Pixel Region tool.

pixregionobj = impixelregionpanel(fig,img);

5-16

Create Pixel Region Tool

The Pixel Region tool overlaps and hides the original image. To see both the image and the tool, shift
their positions so that they do not overlap.

set(ax, 'Units', 'normalized', 'Position',[0 .5 1 .5]);
set(pixregionobj, 'Units', 'normalized', 'Position',[0@ .04 1 .4]);

5-17

5 Building GUIs with Modular Tools

See Also
impixelregion | impixelregionpanel

More About
. “Position Tools” on page 5-7
. “Interactive Image Viewing and Processing Tools” on page 5-2

5-18

Build App to Display Pixel Information

Build App to Display Pixel Information

This example shows how to create a simple app that provides information about pixels and features in
an image using modular pixel information tools.

First, define a function that builds the app. This example uses a function called my pixinfo_tool,
which is attached at the end of the example.

After you define the function that builds the app, test the app. Read an image into the workspace.
I = imread('pears.png');

Display the image with pixel information tools in the app.

my pixinfo tool(I)

Pixel info: (X, %1 Pixel “alue Display range: []

App Creation Function

The my pixinfo_ tool function accepts an image as an argument and displays the image in a figure
window with a Pixel Information tool, Display Range tool, Distance tool, and Pixel Region tool. Note
that the function suppresses the toolbar and menu bar in the figure window because scrollable
navigation is incompatible with standard MATLAB™ figure window navigation tools.

function my pixinfo tool(im)

% Create figure, setting up properties
fig = figure('Toolbar', 'none’,

5-19

5 Building GUIs with Modular Tools

5-20

'Menubar', 'none', ..

'Name', 'My Pixel Info Tool',
"NumberTitle', 'off',
'IntegerHandle', 'off');

reate axes and reposition the axes

o accommodate the Pixel Region tool panel
ax = axes('Units', 'normalized’,
'"Position', [0 .5 1 .5]);

o°
~+ O

% Display image in the axes
img = imshow(im);

% Add Distance tool, specifying axes as parent
distool = imdistline(ax);

% Add Pixel Information tool, specifying image as parent
pixinfo = impixelinfo(img);

% Add Display Range tool, specifying image as parent
drange = imdisplayrange(img);

% Add Pixel Region tool panel, specifying figure as parent
% and image as target
pixreg = impixelregionpanel(fig,img);

% Reposition the Pixel Region tool to fit in the figure
% window, leaving room for the Pixel Information and

% Display Range tools

set(pixreg, 'units', 'normalized', 'position',[0 .08 1 .4])

end

See Also
imdistline | impixelinfo | imdisplayrange | impixelregionpanel

Related Examples

. “Create Pixel Region Tool” on page 5-15

. “Build Image Comparison Tool” on page 5-24

. “Build App for Navigating Large Images” on page 5-21

More About
. “Interactive Tool Workflow” on page 5-6
. “Interactive Image Viewing and Processing Tools” on page 5-2

Build App for Navigating Large Images

Build App for Navigating Large Images

This example shows how to build an app using modular tools that displays an image with navigation
aids including scroll bars, and overview window, and a magnification box.

First, define a function that builds the app. This example defines a function called
my large image display at the end of the example.

After you define the function that builds the app, test the app. Read an image into the workspace.
I = imread('carl.jpg');

Display the image with navigation aids in the app.

my large image display(I)

100%

5-21

5 Building GUIs with Modular Tools

5-22

E-.ZI-.—-el-.-l-%-f'.- i | = ” (=] ” 23 |

File Edit Window Help

L o P

App Creation Function

The my large image display function accepts an image as an argument and displays the image
in a figure window with scroll bars, an Overview tool, and a magnification box. Note that the function
suppresses the toolbar and menu bar in the figure window because scrollable navigation is
incompatible with standard MATLAB™ figure window navigation tools.

function my large image display(im)

% Create a figure without toolbar and menubar

hfig = figure('Toolbar', 'none’',
'Menubar', 'none’, .
'Name', 'My Large Image Display Tool',
"NumberTitle', 'off', ...
'"IntegerHandle', 'off');

% Display the image in a figure with imshow
himage = imshow(im);

% Add the scroll panel
hpanel = imscrollpanel(hfig,himage);

% Position the scroll panel to accommodate the other tools
set(hpanel, 'Units', 'normalized', 'Position',[0 .1 1 .9]);

% Add the magnification box
hMagBox = immagbox(hfig,himage);

% Position the magnification box
pos = get(hMagBox, 'Position');
set(hMagBox, 'Position',[0 0 pos(3) pos(4)]1);

% Add the Overview tool
hovervw = imoverview(himage);

Build App for Navigating Large Images

end

See Also
imscrollpanel | immagbox | imoverview

Related Examples
. “Build App to Display Pixel Information” on page 5-19
. “Create Image Comparison Tool Using ROIs” on page 15-43

More About
. “Interactive Tool Workflow” on page 5-6
. “Interactive Image Viewing and Processing Tools” on page 5-2

. “Add Scroll Panel to Figure” on page 5-10

5-23

5 Building GUIs with Modular Tools

Build Image Comparison Tool

5-24

This example shows how to make a GUI that displays two images side by side in scroll panels that are
synchronized in location and magnification.

First, define a function that builds the app. This example uses a function called
my image compare tool, which is attached at the end of the example.

After you define the function that builds the app, test the app. Get two images.

imread('flamingos.jpg');
rgb2lightness(I);

I
L
Iedge = edge(L, 'Canny');

[N |

Display the images in the app. When you move the detail rectangle in the Overview tool or change the
magnification in one image, both images respond.

my _image compare tool(I,Iedge);

4] Overview | | = ” (=] ” £ |

File Edit Window Help

Lt oo P

Build Image Comparison Tool

100%

App Creation Function

The my image compare tool function accepts two images as input arguments and displays the
images in scroll panels. The custom tool also includes an Overview tool and a Magnification box. Note
that the function suppresses the toolbar and menu bar in the figure window because scrollable
navigation is incompatible with standard MATLAB™ figure window navigation tools.

To synchronize the scroll panels, the function makes the connections between tools using callbacks
and the Scroll Panel API functions. The function specifies a callback function that executes every time
the magnification changes. The function specified is the setMagnification API function of the
other scroll panel. Thus, whenever the magnification changes in one of the scroll panels, the other
scroll panel changes its magnification to match. The tool sets up a similar connection for position
changes.

function my image compare tool(left image,right image)

% Create the figure

hFig = figure('Toolbar', 'none', ...
'Menubar', 'none', ...
'Name', 'My Image Compare Tool',...
'NumberTitle', 'off',...
'IntegerHandle', 'off');

% Display left image

subplot(121)
hImL = imshow(left image);

5-25

5 Building GUIs with Modular Tools

5-26

% Display right image
subplot(122)
hImR = imshow(right image);

% Create a scroll panel for left image

hSpL = imscrollpanel(hFig,hImL);

set(hSpL, 'Units', 'normalized’, ...
'"Position', [0 0.1 .5 0.9])

% Create scroll panel for right image

hSpR = imscrollpanel(hFig, hImR);

set(hSpR, 'Units', 'normalized’, ...
'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box

hMagBox = immagbox(hFig,hImL);

pos = get(hMagBox, 'Position');

set (hMagBox, 'Position', [0 O pos(3) pos(4)])

%% Add an Overview tool
imoverview(hImL)

% Get APIs from the scroll panels
piL = iptgetapi(hSpL);

piR = iptgetapi(hSpR);

%% Synchronize the left and right scroll panels
apilL.setMagnification(apiR.getMagnification())
apilL.setVisibleLocation(apiR.getVisiblelLocation())

% When the magnification changes on the left scroll panel,
% tell the right scroll panel
apilL.addNewMagnificationCallback(apiR.setMagnification);

% When the magnification changes on the right scroll panel,
% notify the left scroll panel
apiR.addNewMagnificationCallback(apilL.setMagnification);

% When the location changes on the left scroll panel,
% notify the right scroll panel
apilL.addNewLocationCallback(apiR.setVisiblelLocation);

% When the location changes on the right scroll panel,
% notify the left scroll panel
apiR.addNewLocationCallback(apilL.setVisiblelLocation);

end

See Also
imscrollpanel | immagbox | imoverview

Related Examples
. “Build App to Display Pixel Information” on page 5-19
. “Build App for Navigating Large Images” on page 5-21

Build Image Comparison Tool

More About
. “Interactive Tool Workflow” on page 5-6
. “Interactive Image Viewing and Processing Tools” on page 5-2

. “Add Scroll Panel to Figure” on page 5-10

5-27

5 Building GUIs with Modular Tools

Create Angle Measurement Tool Using ROl Objects

5-28

Note The impoly function used in this example is not recommended. Use the new drawpolyline
function and Polyline ROI object instead. See “Use Polyline to Create Angle Measurement Tool” on
page 15-78.

This example shows how to create an angle measurement tool using interactive tools and ROI objects.
The example displays an image in a figure window and overlays a simple angle measurement tool
over the image. When you move the lines in the angle measurement tool, the function calculates the
angle formed by the two lines and displays the angle in a title.

Create a function that accepts an image as an argument and displays an angle measurement tool over
the image in a figure window. This code includes a second function used as a callback function that
calculates the angle and displays the angle in the figure.

function my angle measurement tool(im)

% Create figure, setting up properties

figure("Name", "My Angle Measurement Tool",...
"NumberTitle", "off",...
"IntegerHandle","off")

% Display image in the axes % Display image
imshow(im)

o°

Get size of image.
size(im,1);
size(im,2);

S 3

% Get center point of image for initial positioning.
midy = ceil(m/2);

midx = ceil(n/2);

% Position first point vertically above the middle.
firstx = midx;

firsty = midy - ceil(m/4);

lastx = midx + ceil(n/4);

lasty = midy;

% Create a two-segment right-angle polyline centered in the image.

h = impoly(gca, [firstx,firsty;midx,midy;lastx,lasty],"Closed", false);
api = iptgetapi(h);

initial position = api.getPosition()

% Display initial position
updateAngle(initial position)

% set up callback to update angle in title.

api.addNewPositionCallback(@updateAngle);

fcn = makeConstrainToRectFcn("impoly",get(gca,"XLim"),get(gca,"YLim"));

api.setPositionConstraintFcn(fcn);

% Callback function that calculates the angle and updates the title.
Function receives an array containing the current x,y position of

%

Create Angle Measurement Tool Using ROI Objects

% the three vertices.
function updateAngle(p)
% Create two vectors from the vertices.

o o°

1
v2

<

vl
V2

[x1 - x2, yl - y2]
[x3 - x2, Y3 - y2]

[p(lrl)-p(zrl)l p(llz)-p(zlz

[p(3,1)-p(2,1), p(3,2)-p(2,2

% Find the angle.

theta

)1
)1

= acos(dot(vl,v2)/(norm(vl)*norm(v2)));
% Convert it to degrees.

angle degrees = (theta * (180/pi)
% Display the angle in the title of the figure.
title(sprintf("(%1.0f) degrees",angle degrees))

Read image into the workspace.

I = imread("gantrycrane.png");

);

Open the angle measurement tool, specifying the image as an argument. The tool opens a figure
window, displaying the image with the angle measure tool centered over the image in a right angle.
Move the pointer over any of the vertices of the tool to measure any angle in the image. In the
following figure, the tool is measuring an angle in the image. Note the size of the angle displayed in
the title of the figure.

my angle measurement tool(I);

Angle displayed

il

4 My Angle Measurement Tool
File Edit View Inset Tools

Desktop Window Help

Ddde | AXKOdLEA-S|0EH 0D

in title

Angle
measurement

tool

> {129) degrees

5-29

5 Building GUIs with Modular Tools

See Also

More About

. “Create ROI Shapes” on page 15-7
. “ROI Migration” on page 15-18
. “Use Polyline to Create Angle Measurement Tool” on page 15-78

5-30

Geometric Transformations

A geometric transformation (also known as a spatial transformation) modifies the spatial relationship
between pixels in an image, mapping pixel locations in a moving image to new locations in an output
image. The toolbox includes functions that perform certain specialized geometric transformations,
such as resizing and rotating an image. In addition, the toolbox includes functions that you can use to
perform many types of 2-D and N-D geometric transformations, including custom transformations.

“Resize an Image” on page 6-2

“Resize Image and Preserve Aspect Ratio” on page 6-7

“Rotate an Image” on page 6-13

“Crop an Image” on page 6-15

“Translate an Image Using imtranslate Function” on page 6-17

“2-D and 3-D Geometric Transformation Process Overview” on page 6-20
“Migrate Geometric Transformations to Premultiply Convention” on page 6-25
“Matrix Representation of Geometric Transformations” on page 6-27

“Create Composite 2-D Affine Transformations” on page 6-32

“Specify Fill Values in Geometric Transformation Output” on page 6-36
“Perform Simple 2-D Translation Transformation” on page 6-38
“N-Dimensional Spatial Transformations” on page 6-41

“Register Two Images Using Spatial Referencing to Enhance Display” on page 6-43
“Create a Gallery of Transformed Images” on page 6-48

“Exploring a Conformal Mapping” on page 6-63

“Exploring Slices from a 3-Dimensional MRI Data Set” on page 6-75

“Padding and Shearing an Image Simultaneously” on page 6-82

6 Geometric Transformations

Resize an Image

This example shows how to resize an image using the imresize function.
Start by reading and displaying an image.

I = imread("circuit.tif");
imshow(I)

Specify Magnification Value

Resize the image, using the imresize function. In this example, you specify a magnification factor.
To enlarge an image, specify a magnification factor greater than 1.

magnificationFactor = 1.25;
J = imresize(I,magnificationFactor);

Display the original and enlarged image in a montage.

imshowpair(I,J,method="montage")

6-2

Resize an Image

Specify Size of the Output Image

Resize the image again, this time specifying the desired size of the output image, rather than a
magnification value. Pass imresize a vector that contains the number of rows and columns in the
output image. If the specified size does not produce the same aspect ratio as the input image, the
output image will be distorted. If you specify one of the elements in the vector as NaN, imresize
calculates the value for that dimension to preserve the aspect ratio of the image. To perform the
resizing required for multi-resolution processing, use impyramid.

K = imresize(I,[100 150]);
imshowpair(I,K,method="montage")

6-3

6 Geometric Transformations

6-4

Specify Interpolation Method

Resize the image again, this time specifying the interpolation method. When you enlarge an image,
the output image contains more pixels than the original image. imresize uses interpolation to
determine the values of these pixels, computing a weighted average of some set of pixels in the
vicinity of the pixel location. imresize bases the weightings on the distance each pixel is from the
point. By default, imresize uses bicubic interpolation, but you can specify other interpolation
methods or interpolation kernels. You can also specify your own custom interpolation kernel. This
example use nearest neighbor interpolation.

L = imresize(I,magnificationFactor, "nearest");

Display the resized image using bicubic interpolation, J, and the resized image using nearest
neighbor interpolation, L, in a montage.

imshowpair(J,L,method="montage")

Resize an Image

Prevent Aliasing When Shrinking an Image

Resize the image again, this time shrinking the image. When you reduce the size of an image, you
lose some of the original pixels because there are fewer pixels in the output image. This can
introduce artifacts, such as aliasing. The aliasing that occurs as a result of size reduction normally
appears as stair-step patterns (especially in high-contrast images), or as moire (ripple-effect) patterns
in the output image. By default, imresize uses antialiasing to limit the impact of aliasing on the
output image for all interpolation types except nearest neighbor. To turn off antialiasing, specify the
"Antialiasing" name-value argument and set the value to false. Even with antialiasing turned
on, resizing can introduce artifacts because information is always lost when you reduce the size of an
image.

magnificationFactor = 0.66;
M imresize(I,magnificationFactor);
N imresize(I,magnificationFactor,Antialiasing=false);

Display the resized image with and without antialiasing in a montage.

imshowpair(M,N,method="montage")

6 Geometric Transformations

See Also
imresize

More About

. “Resize Image and Preserve Aspect Ratio” on page 6-7
. “Crop an Image” on page 6-15

6-6

Resize Image and Preserve Aspect Ratio

Resize Image and Preserve Aspect Ratio

This example shows how to resize an image while maintaining the ratio of width to height. This
example covers two common situations:

1 You want to resize the image and specify the exact height or width.

2 You want to resize an image to be as large as possible without the width and height exceeding a
maximum value.

Start by reading and displaying an image.

I = imread("lighthouse.png");
imshow(I)

6 Geometric Transformations

Get the size of the image. The aspect ratio of this image is 3:4, meaning that the width is 3/4 of the
height.

[heightI,widthI,~] = size(I)

heightI = 640

6-8

Resize Image and Preserve Aspect Ratio

widthI = 480

Resize Image to Specified Height
Specify the desired height of the image.
targetHeight = 300;

Resize the image, specifying the output size of the image. Because the second element of
targetSize is NaN, imresize automatically calculates the number of rows needed to preserve the
aspect ratio.

targetSize = [targetHeight NaN];
J = imresize(I,targetSize);
[h,w,~] = size(J)

h = 300
w = 225
imshow(J)

Resize Image to Specified Width

Specify the desired width of the image.

targetWidth = 300;

Resize the image, specifying the output size of the image. Because the first element of targetSize

is NaN, imresize automatically calculates the number of columns needed to preserve the aspect
ratio.

6-9

6 Geometric Transformations

targetSize = [NaN targetWidth];
K = imresize(I,targetSize);
[h,w,~] = size(K)

h = 400
w = 300
imshow (K)

Resize Image Within Maximum Size

You can resize an image to be as large as possible without the width and height exceeding a
maximum value.

Specify the maximum dimensions of the image.

maxHeight = 256;
maxWidth = 256;

Determine which dimension requires a larger scaling factor.

scaleWidth widthI/maxWidth

scaleWidth 1.8750

6-10

Resize Image and Preserve Aspect Ratio

scaleHeight = heightI/maxHeight

scaleHeight = 2.5000

Select the output size based on whether the height or width requires a greater scale factor to fit
within the maximum image dimensions. If the height requires a greater scale factor, then specify the
target height as maxHeight. Conversely, if the width requires a greater scale factor, then specify the
target width as maxWidth. Let imresize automatically calculate the size of the other dimension to
preserve the aspect ratio.

if scaleHeight>scaleWidth
targetSize = [maxHeight NaN];
else
targetSize = [NaN maxWidth];
end

Resize the image, specifying the output size of the image.

L = imresize(I,targetSize);
[h,w,~] = size(L)

h = 256
w = 192

imshow(L)

See Also
imresize

6-11

6 Geometric Transformations

More About
. “Crop an Image” on page 6-15
. “Resize an Image” on page 6-2

6-12

Rotate an Image

Rotate an Image

This example shows how to rotate an image and adjust the size of the resulting image.

When you rotate an image using the imrotate function, you specify the image to be rotated and the
rotation angle, in degrees. If you specify a positive rotation angle, the image rotates
counterclockwise; if you specify a negative rotation angle, the image rotates clockwise.

Rotate an Image Counterclockwise

Read an image into the workspace.

I = imread("circuit.tif");

Rotate the image 35 degrees counterclockwise using bilinear interpolation.
J = imrotate(I,35,"bilinear");

Display the original image and the rotated image. By default, the output image is large enough to
include the entire original image. Pixels that fall outside the boundaries of the original image are set
to 0 and appear as a black background in the output image.

figure
imshowpair(I,J, "montage")

Crop a Rotated Image

Rotate the original image again and specify that the rotated image be cropped to the same size as the
original image.

K = imrotate(I,35,"bilinear","crop");

6-13

6 Geometric Transformations

Display the original image and the new image.

figure
imshowpair(I,K, "montage")

See Also
imrotate

Related Examples

. “Crop an Image” on page 6-15

6-14

Crop an Image

Crop an Image

Note You can also crop an image interactively using the Image Tool — see “Crop Image Using Image
Viewer App” on page 4-41.

To extract a rectangular portion of an image, use the imcrop function. Using imcrop, you can
specify the crop region interactively using the mouse or programmatically by specifying the size and
position of the crop region.

This example illustrates an interactive syntax. The example reads an image into the MATLAB
workspace and calls imcrop specifying the image as an argument. imcrop displays the image in a
figure window and waits for you to draw the crop rectangle on the image. When you move the pointer

over the image, the shape of the pointer changes to cross hairs —|— Click and drag the pointer to
specify the size and position of the crop rectangle. You can move and adjust the size of the crop
rectangle using the mouse. When you are satisfied with the crop rectangle, double-click to perform
the crop operation, or right-click inside the crop rectangle and select Crop Image from the context
menu. imcrop returns the cropped image in J.

I = imread("circuit.tif")
J = imcrop(I);

Resize

handle

Crop rectangle
Zopy Position
Sek Color
Fix & I Rati
ix Aspect Ratio Crop Image tool
Crop Image context menu

Cancel

You can also specify the size and position of the crop rectangle as parameters when you call imcrop.
Specify the crop rectangle as a four-element position vector, [xmin ymin width height].

In this example, you call imcrop specifying the image to crop, I, and the crop rectangle. imcrop
returns the cropped image in J.

imread("circuit.tif");
imcrop(I,[60 40 100 90]);

I
J

6-15

6 Geometric Transformations

See Also

imcrop

More About

. “Crop Image Using Image Viewer App” on page 4-41

. “Resize an Image” on page 6-2

. “Resize Image and Preserve Aspect Ratio” on page 6-7

6-16

Translate an Image Using imtranslate Function

Translate an Image Using imtranslate Function

This example shows how to perform a translation operation on an image using the imtranslate
function. A translation operation shifts an image by a specified number of pixels in either the x- or y-
direction, or both.

Read an image into the workspace.

I = imread("cameraman.tif");

Display the image. The size of the image is 256-by-256 pixels. By default, imshow displays the image
with the upper right corner at (0,0).

figure
imshow(I)
title("Original Image")

Original Image

Translate the image, shifting the image by 15 pixels in the x-direction and 25 pixels in the y-direction.
Note that, by default, imtranslate displays the translated image within the boundaries (or limits) of
the original 256-by-256 image. This results in some of the translated image being clipped.

J = imtranslate(I, [15, 25]);

Display the translated image. The size of the image is 256-by-256 pixels.
figure

imshow(J)
title("Translated Image")

6-17

6 Geometric Transformations

Translated Image

Use the QutputVie name-value argument set to "full" to prevent clipping the translated image.
The size of the new image is 281-by-271 pixels.

K = imtranslate(I,[15, 25],"OutputView","full");
Display the translated image.
figure

imshow(K)
title("Translated Image, Unclipped")

6-18

Translate an Image Using imtranslate Function

Translated Image, Unclipped

6-19

6 Geometric Transformations

2-D and 3-D Geometric Transformation Process Overview

To perform a 2-D or 3-D geometric transformation, first create a geometric transformation object that
stores information about the transformation. Then, pass the image to be transformed and the
geometric transformation object to the imwarp function. You optionally can provide spatial
referencing information about the input image to imwarp.

Geometric

Input Image Transformation Object

Imwarp

l

Transformed
Image

imwarp uses the geometric transformation to map coordinates in the output image to the
corresponding coordinates in the input image (inverse mapping). Then, imwarp uses the coordinate
mapping to interpolate pixel values within the input image and calculate the output pixel value.

Create Geometric Transformation Object

Different types of geometric transformation objects store different information about the
transformation.

* Several objects store a transformation matrix that represents a specific type of linear geometric
transformation. These objects include: affinetform2d, affinetform3d, rigidtform2d,
rigidtform3d, simtform2d, simtform3d, transltform2d, transltform3d, and
projtform2d.

* The geometricTransform2d and geometricTransform3d objects store an inverse point-wise
mapping function, and optionally a forward point-wise mapping function.

* The PolynomialTransformation2D object stores an inverse point mapping in the form of a 2-D
polynomial.

* The LocalWeightedMeanTransformation2D and PiecewiselLinearTransformation2D
objects represent different forms of locally-varying point-wise mapping functions.

6-20

2-D and 3-D Geometric Transformation Process Overview

There are several ways to create a geometric transformation object.

Transformations” on page 6-
24

Approach to Create transltf [simtform |affinetf [projecti [geometri |Other

Geometric orm2d 2d orm2d |ve2d cTransfo |Geometri

Transformation . . rm2d c
transltf [simtform | affinetf Transform
orm3d 3d orm3d geometri |ations

. cTransfo

rigidtfo rm3d
rm2d
rigidtfo
rm3d

“Specify Translation, X X

Rotation, or Scale

Parameters” on page 6-21

“Specify Transformation X X X X

Matrix” on page 6-22

“Specify Custom Point-Wise X

Mapping Function” on page

6-22

“Estimate Transformation X (2-D) X (2-D) |X (2-D) X

from Control Point Pairs” on

page 6-23

“Estimate Transformation |X (2-D) X (2-D) X (2-D)

Using Similarity

Optimization” on page 6-

23

“Estimate Transformation |X (2-D) X (2-D)

Using Phase Correlation” on

page 6-24

“Generate Random Affine X

Specify Translation, Rotation, or Scale Parameters

If you know the amount of translation, the rotation angle, and the scale factor, then you can create a
transformation by specifying these parameters.

* Specify translation to create transltform2d and transltform3d objects that represent
translation transformations.

* Specify translation, rotation angles, or both to create rigidtform2d and rigidtform3d objects
that represent rigid transformations.

* Specify any combination of translation, rotation, and an isotropic scale factor to create

simtform2d and simtform3d objects that represent nonreflective similarity transformations.

The following example defines a translation and rotation angle, then creates a rigidtform2d
geometric transformation object from the specified parameters.

6-21

6 Geometric Transformations

6-22

theta = 30;
translation = [10 20.51];
tform = rigidtform2d(theta,translation)

tform =
rigidtform2d with properties:

Dimensionality: 2
RotationAngle: 30
Translation: [10 20.5000]
R: [2x2 double]
A: [3x3 double]

Specify Transformation Matrix

For more complex linear geometric transformations, you can represent the transformation as a
matrix. For example, use a matrix representation for projective transformations or for affine
transformations involving reflection, anisotropic scaling, shear, or compositions of linear
transformations. Specify the transformation matrix to create an affinetform2d, affinetform3d,
or projtform2d object. For more information about creating a transformation matrix, see “Matrix
Representation of Geometric Transformations” on page 6-27.

The following example defines the transformation matrix for anisotropic scaling and reflection about
the y axis, then creates an affinetform2d geometric transformation object from the transformation
matrix.

scaleX = 0.8;
scaleY = 1.5;

A = [scaleX 0 0; O -scaleY 0; 0 0 1];
tform = affinetform2d(A)

tform =
affinetform2d with properties:

Dimensionality: 2
A: [3x3 double]

Specify Custom Point-Wise Mapping Function

If you have an inverse point-wise mapping function, then you can create a custom 2-D and 3-D
geometric transformation using the geometricTransform2d and the geometricTransform3d
objects respectively.

The following example specifies an inverse mapping function that accepts and returns 2-D points in
packed (x,y) format. Then, the example creates a geometricTransform2d geometric transformation
object from the inverse mapping function.

inversefn @(c) [c(:,1)+c(:,2),c(:,1).72]

inversefn
function handle with value:

@Q(c)[c(:,1)+c(:,2),c(:,1).72]

tform = geometricTransform2d(inversefn)

2-D and 3-D Geometric Transformation Process Overview

tform =
geometricTransform2d with properties:

InverseFcn: [function handle]
ForwardFcn: []
Dimensionality: 2

Similarly, the following example creates a geometricTransform3d geometric transformation object
using the inverse mapping function. The example specifies an inverse mapping function that accepts
and returns 3-D points in packed (x,y,z) format.

inversefn @(c)[c(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).72]
inversefn =
function handle with value:

@(c)lc(:,1)+c(:,2),c(:,1)-c(:,2),c(:,3).72]

tform = geometricTransform3d(inversefn)

tform
geometricTransform3d with properties:

InverseFcn: [function handle]
ForwardFcn: []
Dimensionality: 3

Estimate Transformation from Control Point Pairs

You can create a geometric transformation object by passing pairs of control points to the
fitgeotform2d function. The fitgeotform2d function automatically estimates the transformation
from these points and returns one of the geometric transformation objects.

Different transformations require a varying number of points. For example, affine transformations
require three non-collinear points in each image (a triangle) and projective transformations require
four points (a quadrilateral).

This example defines two pairs of control points, then uses the fitgeotform2d to create an
affinetform2d geometric transformation object.

movingPoints = [11 11;21 11; 21 21];

fixedPoints = [51 51;61 51;61 61];

tform = fitgeotform2d(movingPoints, fixedPoints, "affine")
tform =

affinetform2d with properties:

Dimensionality: 2
A: [3x3 double]

Estimate Transformation Using Similarity Optimization

If you have a fixed image and a moving image that are slightly misaligned, then you can use the
imregtform function to estimate an affine geometric transformation that aligns the images.

6-23

6 Geometric Transformations

6-24

imregtform optimizes the mean squares or Mattes mutual information similarity metric of the two
images, using a regular step gradient descent or one-plus-one evolutionary optimizer. For more
information, see “Create an Optimizer and Metric for Intensity-Based Image Registration” on page 7-
26.

Estimate Transformation Using Phase Correlation

If you have a fixed image and a moving image that are severely misaligned, then you can use the
imregcorr function to estimate an affine geometric transformation that improves the image
alignment. You can refine the resulting transformation by using similarity optimization.

Generate Random Affine Transformations

You can create an affine geometric transformation with randomized transformation parameters using
the randomAffine2d and randomAffine3d functions. These functions support all affine parameters
including reflection about each axis, rotation, shearing, and anisotropic scale factors. Randomized
affine transformations are commonly used as a data augmentation technique for deep learning.

See Also
imwarp

Related Examples

. “Perform Simple 2-D Translation Transformation” on page 6-38

. “Create Composite 2-D Affine Transformations” on page 6-32
More About

. “Matrix Representation of Geometric Transformations” on page 6-27
. “N-Dimensional Spatial Transformations” on page 6-41

Migrate Geometric Transformations to Premultiply Convention

Migrate Geometric Transformations to Premultiply Convention

Starting in R2022b, functions that create and perform geometric transformations use a premultiply
matrix convention.

A new set of objects enable geometric transformations using a premultiply convention. There are no
plans to remove the old geometric transformation objects that support a postmultiply convention.

About the Premultiply and Postmultiply Conventions

Using the previous 2-D postmultiply matrix convention, you transform the point (u,v) in the input
coordinate space to the point (x,y) in the output coordinate space using the convention:

[xy1l]l=[uv1]*T
The geometric transformation matrix T is represented by a 3-by-3 matrix:

adO
T=|beO
cf1

In the 2-D premultiply matrix convention, you transform the point (u,v) in the input coordinate space
to the point (x,y) in the output coordinate space using the convention:

X u
y[=AX|v
1 1

The geometric transformation matrix A is represented by a 3-by-3 matrix that is the transpose of
matrix T:

abc
A=|def
001

Create New Geometric Transformation Objects from Previous
Geometric Transformation Objects

If your code uses one of the previous geometric transformation objects, then you can update your
code by using a new geometric transformation object that supports the premultiply convention.

1 Select a type of new geometric transformation object that performs your desired transformation.
The affine and rigid postmultiply geometric transformation objects support multiple types of new
premultiply geometric transformation objects. The table shows the available geometric
transformations objects that you can use instead of the previous objects.

6-25

6 Geometric Transformations

6-26

Previous Geometric Current Geometric Transformation Object

Transformation Object

affine2d Use affinetform2d instead. To create a 2-D affine
transformation that represents a purely rigid,
similar, or translation transformation, use
rigidtform2d, simtform2d, or transltform2d,
respectively.

affine3d Use affinetform3d instead. To create a 3-D affine
transformation that represents a purely rigid,
similar, or translation transformation, use
rigidtform3d, simtform3d, or transltform3d,
respectively.

rigid2d Use rigidtform2d instead. To create a 2-D rigid
transformation that represents pure translation, use
transltform2d.

rigid3d Use rigidtform3d instead. To create a 3-D rigid
transformation that represents pure translation, use
transltform3d.

projective2d Use projtform2d instead.

2 Create the object using the transpose of the transformation matrix stored in the old object. For
example, this code shows how to convert a 2-D affine transformation represented by an
affine2d object named tformPost to an affinetform2d object named tformPre.

T = tformPost.T;

A=T';

tformPre = affinetform2d(A)
See Also
More About

“2-D and 3-D Geometric Transformation Process Overview” on page 6-20

“Matrix Representation of Geometric Transformations” on page 6-27

Matrix Representation of Geometric Transformations

Matrix Representation of Geometric Transformations

You can represent a linear geometric transformation as a numeric matrix. Each type of
transformation, such as translation, scaling, rotation, and reflection, is defined using a matrix whose
elements follow a specific pattern. You can combine multiple transformations by taking a composite of
the matrices representing the transformations. For more information, see “Create Composite 2-D
Affine Transformations” on page 6-32.

2-D Affine Transformations

The table lists 2-D affine transformations with the transformation matrix used to define them. For 2-D
affine transformations, the last row must be [0 0 1].

* Use combinations of 2-D translation matrices to create a transltform2d object representing a
translation transformation.

* Use combinations of 2-D translation and rotation matrices to create a rigidtform2d object
representing a nonreflective rigid transformation.

» Use combinations of 2-D translation, rotation, and scaling matrices to create a simtform2d object
representing a nonreflective similarity transformation.

* Use any combination of 2-D transformation matrices to create an affinetform2d object
representing a general affine transformation.

100 200 300 400

2-D Affine [Example (Original and Transformation Matrix
Transform |Transformed Image)
ation
Translatio e displacement along the x
n
100 . Il . ﬁ e displacement along the y
200
brmation about pixel
300 see “Image Coordinate
400
100 200 300 400
Scale
100
200
300
400

6-27

6 Geometric Transformations

2-D Affine [Example (Original and Transformation Matrix
Transform |Transformed Image)
ation
Shear actor along the x
100 hctor along the y
200
300
400
100 200 300 400
Reflection g angle of the axis of
100 eflections are vertical and
ction. Vertical reflection is
200 200 t the x-axis, so ¢ is 0 and
atrix simplifies to:
300
10;, 060 1].
400 400
100 200 300 400 100 %ZO@W r%%ction is reflection about
the y-axis, so ¢ is 90 and the reflection
matrix simplifies to:
[-100; 010; 00 1]
Rotation i cifies the angle of rotation about the
100
200
300
400
100 200 300 400

2-D Projective Transformations

Projective transformation enables the plane of the image to tilt. Parallel lines can converge towards a
vanishing point, creating the appearance of depth.

The transformation is a 3-by-3 matrix. Unlike affine transformations, there are no restrictions on the
last row of the transformation matrix. Use any composition of 2-D affine and projective
transformation matrices to create a projtform2d object representing a general projective
transformation.

6-28

Matrix Representation of Geometric Transformations

2-D Example Transformation Matrix
Projective
Transform
ation

Tilt

-300

100 -200

200 -100

300

400 100

100 200 300 400
200

300

100 200 300 400 500 600 VOO

3-D Affine Transformations

The table lists the 3-D affine transformations with the transformation matrix used to define them.
Note that in the 3-D case, there are multiple matrices, depending on how you want to rotate or shear
the image. For 3-D affine transformations, the last row must be [0 @ 0 1].

» Use combinations of 3-D translation matrices to create a transltform3d object representing a
translation transformation.

* Use combinations of 3-D translation and rotation matrices to create a rigidtform3d object
representing a nonreflective rigid transformation.

» Use combinations of 3-D translation, rotation, and scaling matrices to create a simtform3d object
representing a nonreflective similarity transformation.

* Use any combination of 3-D transformation matrices to create an affinetform3d object
representing a general affine transformation.

3-D Affine Transformation Matrix
Transformation
Translation Translation by amount t,, t,, and t, in the x, y, and z directions, respectively:
100 t,
010¢,
001t,
0001

6-29

6 Geometric Transformations

6-30

3-D Affine
Transformation

Transformation Matrix

Scale Scale by scale factor s, sy, and s, in the x, y, and z dimensions, respectively:
sx 000
0s,00
00s,0
0001
Shear Shear within the y-z Shear within the x-z Shear within the x-y
plane: plane: plane:
1 000 1 shy, 00 10 shy O
shyy 100 01 00 01 sh,y 0
shy, 010 0 shy, 10 00 1 0
0 001 0 0 01 00 0 1
such that such that such that
X =X X' =X+ shyyy X =X + shyz
Y =Y+ shyyx y=y Y =y+shyz
Z = 2 + Shy,x Z =z + shyy 7=z
Reflection Reflection across the y-z |Reflection across the x-z | Reflection across the x-y
plane, negating the x plane, negating the y plane, negating the z
coordinate: coordinate: coordinate:
-1000 1000 10 00
0 100 0-100 01 00
0010 0010 00-10
0 001 0 001 00 0 1
Rotation Rotation within the y-z |Rotation within the x-z |Rotation within the x-y

plane, by angle 6, about
the x axis, in degrees:

1 0 0
0 cosd(6y) —sind(6y)
0 sind(6y) cosd(6y)
0 0 0

plane, by angle 6, about
the y axis, in degrees:

0 cosd(Oy) 0 sind(G}

0 0 1 0
0 - sind(Gy) 0 cosd(9J
1 0 0 0

plane, by angle 6, about
the z axis, in degrees:

) 0 [cosd(6,) —sind(6,)
0 |sind(8,) cosd(6,)
) 0 0 0
1 0 0

D 0
D 0

1 0
D 1

Matrix Representation of Geometric Transformations

3-D Projective and N-D Transformations

The imwarp function does not support 3-D projective transformations or N-D affine and projective
transformations. Instead, you can create a spatial transformation structure from a geometric
transformation matrix using the maketform function. Then, apply the transformation to an image
using the tformarray function. For more information, see “N-Dimensional Spatial Transformations”
on page 6-41.

The dimensions of the transformation matrix must be (N+1)-by-(N+1). The maketform and
tformarray functions use the postmultiply matrix convention. Geometric transformation matrices in
the postmultiply convention are the transpose of matrices in the premultiply convention. Therefore,
for N-D affine transformation matrices, the last column must contain [zeros(N,1); 1] and there
are no restrictions on the values of the last row.

See Also
imwarp | fitgeotform2d | affinetform2d | affinetform3d | projtform2d

Related Examples

. “Create Composite 2-D Affine Transformations” on page 6-32

. “Perform Simple 2-D Translation Transformation” on page 6-38

More About

. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20

6-31

6 Geometric Transformations

Create Composite 2-D Affine Transformations

This example shows how to create a composite of 2-D translation and rotation transformations. The
order of the transformation matters, so there are two approaches to creating a composition:

1) Create a matrix that represents the individual transformations, then create the composite
transformation by multiplying the matrices together, and finally store the transformation matrix as an
affinetform2d object. This approach has the most flexibility because you can use all types of affine
transformations including shear, reflection, anisotropic scaling, and other composite affine
transformations. You can also control the order of transformations through the order of the matrix
multiplication.

2) Create a simtform2d, rigidtform2d, or transltform2d geometric object. This approach
makes it easy to create a composite transformation when you know the scale factor, rotation angle,
and translation distance of a nonreflective similarity transformation. However, the geometric
transformation objects always perform the relevant transformations in a fixed order: scaling first,
then rotation, then translation. If you need to perform the transformations in a different order, then
you must use matrices and create an affine transformation object.

This example demonstrates both approaches for a rigid transformation consisting of translation and
rotation.

Create a checkerboard image that will undergo transformation. Also create a spatial reference object
for the image.

cb = checkerboard(4,2);
cb ref = imref2d(size(cb));

To illustrate the spatial position of the image, create a flat background image. Overlay the
checkerboard over the background, highlighting the position of the checkerboard in green.

background = zeros(150);
imshowpair(cb,cb ref,background,imref2d(size(background)))

20 100 130

Create a translation matrix that shifts an image horizontally and vertically.

6-32

Create Composite 2-D Affine Transformations

; [}
o o l0@ —.
—
ty = a L :
T=1[101tx; 0 1ty; 00 1]
T = 3x3
1 o 100
0 1 0
0 0 1

Create a rotation matrix that rotates an image clockwise about the origin.

3 =L
theta = ;
R = [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]
R = 3x3
0.8660 -0.5000 0
0.5000 0.8660 0

0 0 1.0000

Rotation Followed by Translation using Matrices

Perform rotation first and translation second. Using the premultiply matrix convention, the
translation matrix T is on the left and the rotation matrix R is on the right.

TR = T*R
TR = 3x3
0.8660 -0.5000 100.0000
0.5000 0.8660 0
0 0 1.0000

Store the composite transformation as an affine transformation, then warp the original checkerboard
image. Display the result with spatial referencing.

tform tr = affinetform2d(TR);

[out,out ref] = imwarp(cb,cb_ref,tform tr);
imshowpair(out,out ref,background,imref2d(size(background)))

6-33

6 Geometric Transformations

6-34

20 100 130

Translation Followed by Rotation using Matrices

Reverse the order of the transformations: perform translation first and rotation second. Using the
premultiply matrix convention, the rotation matrix R is on the left and the translation matrix T is on
the right.

RT = R*T
RT = 3x3

0.8660 -0.5000 86.6025
0.5000 0.8660 50.0000
0 0 1.0000

Store the composite transformation as an affine transformation, then warp the original checkerboard
image. Display the result with spatial referencing. Notice how the spatial position of the transformed
image is different than when translation was followed by rotation.

tform rt = affinetform2d(RT);
[out,out ref] = imwarp(cb,cb ref,tform rt);
imshowpair(out,out ref,background,imref2d(size(background)))

0 100 130

Create Composite 2-D Affine Transformations

Rotation Followed by Translation using Rigid Transformation Object

Create a rigid geometric transformation object with the rotation angle and translation distance that
were specified earlier in the example.

tform rigid = rigidtform2d(theta, [tx ty]);

View the geometric transformation matrix by querying the A property. The matrix is equal to the
matrix TR as expected, because a rigid transformation object performs rotation before translation.

tform rigid.A
ans = 3x3

0.8660 -0.5000 100.0000
0.5000 0.8660 0
0 0 1.0000

Confirm the order of operations by warping the test image and displaying the result with spatial
referencing. The result is identical to the result obtained through matrix multiplication.

[out,out ref] = imwarp(cb,cb ref,tform rigid);
imshowpair(out,out ref,background,imref2d(size(background)))

30 100 150

See Also
imwarp

More About

. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20
. “Matrix Representation of Geometric Transformations” on page 6-27

6-35

6 Geometric Transformations

Specify Fill Values in Geometric Transformation Output

6-36

This example shows how to specify the fill values used by imwarp when it performs a geometric
transformation.

When you perform a transformation, there are often pixels in the output image that are not part of
the original input image. These pixels must be assigned some value, called a fill value. By default,
imwarp sets these pixels to zero and they display as black. You can specify a different value using the
FillValues name-value argument. If the image being transformed is a grayscale image, specify a
scalar value that specifies a shade of gray. If the image being transformed is an RGB image, you can
use either a scalar value or a 1-by-3 vector. If you specify a scalar, imwarp uses that shade of gray for
each plane of the RGB image. If you specify a 1-by-3 vector, imwarp interprets the values as an RGB
color value.

Read a color image into workspace.
rgb = imread("onion.png");

Specify an amount of translation, and create a geometric transformation object that represents a
translation transformation.

translation = [15 40];
tform = transltform2d(translation);

Create a 2-D spatial referencing object. This object specifies aspects of the coordinate system of the

output space so that the area needing fill values is visible. By default, imwarp sizes the output image
to be just large enough to contain the entire transformed image but not the entire output coordinate
space.

Rout = imref2d(size(rgb));

Rout.XWorldLimits(2) Rout.XWorldLimits(2)+translation(1);
Rout.YWorldLimits(2) Rout.YWorldLimits(2)+translation(2);
Rout.ImageSize = Rout.ImageSize+translation;

rg

Perform the transformation using the imwarp function.

cb _rgb = imwarp(rgb,tform,"OutputView",Rout);
imshow(cb_rgb)

Specify Fill Values in Geometric Transformation Output

Now perform the transformation again, this time specifying a fill value.

fillvalue = [187 192 57];

cb fill = imwarp(rgb,tform, "OutputView",Rout,"FillValues",fillValue);
imshow(cb fill)

See Also
imwarp | imref2d | transltform2d | affinetform2d

More About
. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20
. “Matrix Representation of Geometric Transformations” on page 6-27

6-37

6 Geometric Transformations

Perform Simple 2-D Translation Transformation

This example shows how to perform a simple affine transformation called a translation. In a
translation, you shift an image in coordinate space by adding a specified value to the x- and y-
coordinates. (You can also use the imtranslate function to perform translation.)

Read the image to be transformed. This example creates a checkerboard image using the
checkerboard function.

cb = checkerboard;
imshow(cb)

Get spatial referencing information about the image. This information is useful when you want to
display the result of the transformation.

cb _ref = imref2d(size(cb))

cb _ref =
imref2d with properties:

XWorldLimits: [0.5000 80.5000]
YWorldLimits: [0.5000 80.5000]
ImageSize: [80 801]
PixelExtentInWorldX: 1
PixelExtentInWorldY: 1
ImageExtentInWorldX: 80
ImageExtentInWorldY: 80
XIntrinsicLimits: [0.5000 80.5000]
YIntrinsicLimits: [0.5000 80.5000]

Specify the amount of translation in the x and y directions.

tx
ty

20;
30;

Create a transltform2d geometric transformation object that represents the translation
transformation. For other types of geometric transformations, you can use other types of objects.

tform = transltform2d(tx,ty);

Perform the transformation. Call the imwarp function, specifying the image you want to transform
and the geometric transformation object. imwarp returns the transformed image, cb_translated.

6-38

Perform Simple 2-D Translation Transformation

This example also returns the optional spatial referencing object, cb_translated ref, which
contains spatial referencing information about the transformed image.

[cb _translated,cb translated ref] = imwarp(cb,tform);

View the original and the transformed image side-by-side. When viewing the translated image, it
might appear that the transformation had no effect. The transformed image looks identical to the
original image. The reason that no change is apparent in the visualization is because imwarp sizes
the output image to be just large enough to contain the entire transformed image but not the entire
output coordinate space. Notice, however, that the coordinate values have been changed by the
transformation.

figure

subplot(1,2,1)

imshow(cb,cb ref)

subplot(1,2,2)

imshow(cb translated,cb translated ref)

10 40
20 50
30 g0
40 70
50 80
&0 a0
70 100
80 110
20 40 &0 80 40 &0 80 100

To see the entirety of the transformed image in the same relation to the origin of the coordinate space
as the original image, use imwarp with the "OutputView" name-value argument, specifying a
spatial referencing object. The spatial referencing object specifies the size of the output image and
how much of the output coordinate space is included in the output image. To do this, the example
makes a copy of the spatial referencing object associated with the original image and modifies the
world coordinate limits to accommodate the full size of the transformed image. The example sets the
limits of the output image in world coordinates to include the origin from the input.

6-39

6 Geometric Transformations

cb_translated ref = cb ref;
cb_translated ref.XWorldLimits(2)
cb_translated ref.YWorldLimits(2)

cb translated ref.XWorldLimits(2)+tx;
cb translated ref.YWorldLimits(2)+ty;

[cb_translated,cb translated ref]
OutputView=cb translated ref);

imwarp(cb,tform,

figure

subplot(1,2,1)

imshow(cb,cb ref)

subplot(1,2,2)

imshow(cb translated,cb translated ref);

10

20
20
0 40
40

60
50
a0 20
70
80 100

20 40 a0
20 40 a0 20 100
See Also

imwarp | imref2d | transltform2d | affinetform2d

More About
. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20
. “Matrix Representation of Geometric Transformations” on page 6-27

6-40

N-Dimensional Spatial Transformations

N-Dimensional Spatial Transformations

You can perform N-D geometric transformations using the tformarray function. You can also use
tformarray to perform mixed-dimensional transformations, in which the input and output arrays do
not have the same dimensions. The output can have either a lower or higher number of dimensions
than the input. For example, if you are sampling 3-D data on a 2-D slice or manifold, the input array
might have a lower dimensionality. The output dimensionality might be higher, for example, if you
combine multiple 2-D transformations into a single 2-D to 3-D operation.

Before using the tformarray function, prepare the input arguments required to perform the
geometric transformation.

* Create the spatial transformation using the maketform function. If you create the spatial
transformation from a matrix, maketform expects the matrix to be in the postmultiply convention.

* Create the resampling structure using the makeresampler function. A resampler structure
defines how to interpolate values of the input array at specified locations. For example, you could
specify your own separable interpolation kernel, build a custom resampler around the interp2 or
interp3 functions, or even implement an advanced antialiasing technique. The resampling
structure also controls the edge behavior when interpolating.

Next, apply the geometric transformation to an image using the tformarray function, specifying the
spatial transformation structure and the resampling structure. You can also transform individual
points and lines to explore the geometric effects of a transformation. Use the tformfwd and
tforminv functions to perform forward and inverse transformations, respectively.

This example uses tformarray to perform a projective transformation of a checkerboard image, and
makeresampler to create a resampling structure with a standard bicubic interpolation method.

I = checkerboard(20,1,1);

figure

imshow(I)

T = maketform("projective",[1 1; 41 1; 41 41; 1 41],
[55; 40 5; 35 30; -10 301);

R = makeresampler("cubic","circular");

J = tformarray(I,T,R,[1 2],[2 1],[100 100]1,[1,[1);
figure

imshow(J)

Original Transformed

image image

The makeresampler and tformarray functions enable you to control many aspects of the
transformation. For example, note how tformarray created an output image that is larger than the
size of the original image. Further, notice that the transformed image appears to contain multiple
copies of the original image. This is accomplished by specifying a padding method in the resampling
structure that extends the input image by repeating the pixels in a circular pattern.

6-41

6 Geometric Transformations

See Also

More About

. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20

6-42

Register Two Images Using Spatial Referencing to Enhance Display

Register Two Images Using Spatial Referencing to Enhance
Display

This example shows how to use spatial referencing objects to understand the spatial relationship
between two images in image registration and display them effectively. This example brings one of
the images, called the moving image, into alignment with the other image, called the fixed image.

Read the two images of the same scene that are slightly misaligned.

fixed = imread("westconcordorthophoto.png");
moving = imread("westconcordaerial.png");

Display the moving (unregistered) image.

iptsetpref(ImshowAxesVisible="on")

imshow(moving)

text(size(moving,2),size(moving,1)+35,"Image courtesy of mPower3/Emerge",
FontSize=7,HorizontalAlignment="right")

20 100 150 200 250 300 350

Image courtesy of mPower3/Emerge

Load a MAT file that contains preselected control points for the fixed and moving images.

6-43

6 Geometric Transformations

6-44

load westconcordpoints

Fit a projective geometric transformation to the control point pairs using the fitgeotform2d
function.

tform = fitgeotform2d(movingPoints, fixedPoints, "projective");

Perform the transformation necessary to register the moving image with the fixed image, using the
imwarp function. This example uses the optional "FillValues" name-value argument to specify a
fill value (white), which will help when displaying the fixed image over the transformed moving
image, to check registration. Notice that the full content of the geometrically transformed moving
image is present, now called registered. Also note that there are no blank rows or columns.

registered = imwarp(moving,tform,FillValues=255);
imshow(registered)

20 100 150 200 250 300 350 400

Overlay the transformed image, registered, over the fixed image using the imshowpair function.
Notice how the two images appear misregistered. This happens because imshowpair assumes that
the images are both in the default intrinsic coordinate system. The next steps provide two ways to
remedy this display problem.

imshowpair(fixed, registered, "blend");

Register Two Images Using Spatial Referencing to Enhance Display

a0

100 4

200

250

300

350

20 100 150 200 250 300 350 400

Constrain the transformed image, registered, to the same number of rows and columns, and the
same spatial limits, as the fixed image. This ensures that the registered image appears registered
with the fixed image but areas of the registered image that would extrapolate beyond the extent of
the fixed image are discarded. To do this, create a default spatial referencing object that specifies the
size and location of the fixed image, and use the "OutputView" name-value argument of imwarp to
create a constrained resampled image registeredl. Display the registered image over the fixed
image. In this view, the images appear to have been registered, but not all of the unregistered image
is visible.

Rfixed = imref2d(size(fixed));

registeredl = imwarp(moving,tform,FillValues=255,0utputView=Rfixed);
imshowpair(fixed, registeredl, "blend");

6-45

6 Geometric Transformations

6-46

250
300

350

o0 100 150 200 250 300 350

As an alternative, use the optional imwarp syntax that returns the output spatial referencing object
that indicates the position of the full transformed image in the same default intrinsic coordinate
system as the fixed image. Display the registered image over the fixed image and note that now the
full registered image is visible.

[registered2,Rregistered] = imwarp(moving,tform,FillValues=255);
imshowpair(fixed,Rfixed, registered2,Rregistered, "blend")

Register Two Images Using Spatial Referencing to Enhance Display

200
250
300

350

400

20 100 150 200 250 300 350 400

Clean up.

iptsetpref("ImshowAxesVisible","off")

6-47

6 Geometric Transformations

Create a Gallery of Transformed Images

6-48

This example shows many properties of geometric transformations by applying different
transformations to a checkerboard image.

A two-dimensional geometric transformation is a mapping that associates each point in a Euclidean
plane with another point in a Euclidean plane. In these examples, the geometric transformation is
defined by a rule that tells how to map the point with Cartesian coordinates (x, y) to another point
with Cartesian coordinates (u, v). A checkerboard pattern is helpful in visualizing a coordinate grid in
the plane of the input image and the type of distortion introduced by each transformation.

Create a sample checkerboard image using the checkerboard function. The image has rectangular
tiles and four unique corners, which makes it easy to see how the checkerboard image gets distorted
by geometric transformations. After you run this example once, try changing the image I to your
favorite image.

sqsize = 60;

I = checkerboard(sqsize,4,4);
imshow(I)

title("Original")

Create a Gallery of Transformed Images

Original

Get the size of the image, and specify a fill value for the background.

nrows = size(I,1);
ncols = size(I,2);
fill = 0.3;

Similarity Transformation

Similarity transformations can include rotation, isotropic scaling, and translation, but not reflection.
Shapes and angles are preserved. Parallel lines remain parallel and straight lines remain straight.

Specify the rotation angle, scale factor, and translation amounts in the x and y directions. Then create
a similarity geometric transformation object.

scale = 1.2;
angle = 40;
tx = 0;

6-49

6 Geometric Transformations

ty = 0;
t sim = simtform2d(scale,angle, [tx ty]);

Apply the similarity geometric transformation to the image and display the result.
I similarity = imwarp(I,t _sim,FillValues=fill);

imshow(I similarity);
title("Similarity")

Similarity

If you change either tx or ty to a nonzero value, you will notice that it has no effect on the output
image. If you want to see the coordinates that correspond to your transformation, including the
translation, include spatial referencing information:

6-50

Create a Gallery of Transformed Images

[I similarity,RI] = imwarp(I,t sim,FillValues=fill);
imshow(I similarity,RI)

axis on

title("Similarity (Spatially Referenced)")

Similarity (Spatially Referenced)

100

200

300

400

500

600

700

800

-300 -200 -100 0 100 200 300 400

Notice that passing the output spatial referencing object RI from imwarp reveals the translation. To
specify what part of the output image you want to see, use the OutputView name-value argument in
the imwarp function.

Reflective Similarity Transformation

In a reflective similarity transformation, similar triangles map to similar triangles.

6-51

6 Geometric Transformations

6-52

Specify the rotation angle, scale factor, and translation amounts in the x and y directions, and
reflection coefficient. Specify the reflection coefficient r as -1 to perform reflection, and 1 otherwise.
Create a 3-by-3 matrix that represents the transformation.

scale*cosd(angle);
scale*sind(angle);

A= [sc r*ss tx;
-ss r¥*sc ty;
0 0 11;

Because reflective similarities are a subset of affine transformations, create an affine geometric
transformation object from the geometric transformation matrix.

t reflective = affinetform2d(A);

Apply the reflective similarity transformation to the image and display the result with the output
spatial referencing information.

[I reflective,RI] = imwarp(I,t reflective,FillValues=fill);
imshow(I reflective,RI)

axis on

title("Reflective Similarity")

Create a Gallery of Transformed Images

-800

-700

-600

-500

-400

-300

-200

-100

Reflective Similarity

-100 0 100 200 300 400 500 600 700

Affine Transformation

In an affine transformation, the x and y dimensions can be scaled or sheared independently and there
can be translation, reflection, and rotation. Parallel lines remain parallel. Straight lines remain
straight.

Specify a general affine transformation matrix. All six elements of the first and second columns can
be different, and the third row must be [0 0 1]. Create an affine geometric transformation object from
the geometric transformation matrix.

A= 1 1 0;
0.3 2 0;

6-53

6 Geometric Transformations

0 0 1];
t aff = affinetform2d(A);

Apply the generic affine transformation to the image and display the result with the output spatial
referencing information.

I affine = imwarp(I,t aff,FillValues=fill);

imshow(I affine)
title("Affine")

6-54

Create a Gallery of Transformed Images

Affine

Projective Transformation

In a projective transformation, quadrilaterals map to quadrilaterals. Straight lines remain straight but
parallel lines do not necessarily remain parallel.

Specify a general projective transformation matrix. All nine elements of the matrix can be different,
with no constraints on the last row. Create a projective geometric transformation object from the
geometric transformation matrix.

6-55

6 Geometric Transformations

A= 1 1 0;
0 1 0;

0.002 0.0002 1];

t proj = projtform2d(A);

Apply the projective transformation to the image and display the result with the output spatial
referencing information.

I projective = imwarp(I,t proj,FillValues=fill);
imshow(I projective)
title("Projective")

Projective

Piecewise Linear Transformation

In a piecewise linear transformation, affine transformations are applied separately to regions of the
image. In this example, the top-left, top-right, and bottom-left points of the checkerboard remain
unchanged, but the triangular region at the lower-right of the image is stretched so that the bottom-
right corner of the transformed image is 50% further to the right and 20% lower than the original
coordinate.

6-56

Create a Gallery of Transformed Images

movingPoints [0 0; @ nrows; ncols 0; ncols nrows;];
fixedPoints [0 0; 0 nrows; ncols 0; ncols*1.5 nrows*1.2];
t piecewise linear = fitgeotform2d(movingPoints, fixedPoints, "pwl");

I piecewise linear = imwarp(I,t piecewise linear,FillValues=fill);
imshow(I piecewise linear)
title("Piecewise Linear")

Piecewise Linear

Sinusoidal Transformation

This example and the following two examples show how you can create an explicit mapping to
associate each point in a regular grid (xi,yi) with a different point (ui,vi). This mapping is stored in a
geometricTransform2d object, which used by imwarp to transform the image.

In this sinusoidal transformation, the x-coordinate of each pixel is unchanged. The y-coordinate of
each row of pixels is shifted up or down following a sinusoidal pattern.

a = ncols/12; % Try varying the amplitude of the sinusoid

ifcn = @(xy) [xy(:,1), xy(:,2) + a*sin(2*pi*xy(:,1)/nrows)];
tform = geometricTransform2d(ifcn);

6-57

6 Geometric Transformations

6-58

I sinusoid = imwarp(I,tform,FillValues=fill);
imshow(I sinusoid);
title("Sinusoid")

Sinusoid

Barrel Transformation

Barrel distortion perturbs an image radially outward from its center. Distortion is greater farther
from the center, resulting in convex sides.

First, define a function that maps pixel indices to distance from the center. Use the meshgrid
function to create arrays of the x-coordinate and y-coordinate of each pixel, with the origin in the
upper-left corner of the image.

[xi,yi] = meshgrid(l:ncols,l:nrows);

Shift the origin to the center of the image. Then, convert the Cartesian x- and y-coordinates to
cylindrical angle (theta) and radius (r) coordinates using the cart2pol function. r changes linearly
as distance from the center pixel increases.

Create a Gallery of Transformed Images

xi - ncols/2;
yi - nrows/2;
heta,r] = cart2pol(xt,yt);

Xt
yt
[t

Define the amplitude, a, of the cubic term. This parameter is adjustable. Then, add a cubic term to r
so that r changes nonlinearly with distance from the center pixel.

a =1; % Try varying the amplitude of the cubic term.
rmax = max(r(:));
sl =r + r.”3*(a/rmax.”2);

Convert back to the Cartesian coordinate system. Shift the origin back to the upper-right corner of
the image.

[ut,vt] = pol2cart(theta,sl);
ui = ut + ncols/2;
vi = vt + nrows/2;

Store the mapping between (xi,yi) and (ui,vi) in a geometricTransform2d object. Use imwarp
to transform the image according to the pixel mapping.

ifcn = @(c) [ui(:) vi(:)]1;
tform = geometricTransform2d(ifcn);

I barrel = imwarp(I,tform,FillValues=fill);

imshow(I barrel)
title("Barrel")

6-59

6 Geometric Transformations

6-60

Barrel

Pin Cushion Transformation

Pin-cushion distortion is the inverse of barrel distortion because the cubic term has a negative
amplitude. Distortion is still greater farther from the center but the distortion appears as concave
sides.

You can begin with the same theta and r values as for the barrel transformation. Define a different
amplitude, b, of the cubic term. This parameter is adjustable. Then, subtract a cubic term to r so that
r changes nonlinearly with distance from the center pixel.

b
S

0.4; % Try varying the amplitude of the cubic term.
r - r.”3*(b/rmax.”2);

Convert back to the Cartesian coordinate system. Shift the origin back to the upper-right corner of
the image.

Create a Gallery of Transformed Images

[ut,vt] = pol2cart(theta,s);
ui = ut + ncols/2;
vi = vt + nrows/2;

Store the mapping between (xi,yi) and (ui,vi) in a geometricTransform2d object. Use imwarp
to transform the image according to the pixel mapping.

ifcn = @(c) [ui(:) vi(:)];

tform = geometricTransform2d(ifcn);

I pin = imwarp(I,tform,FillValues=fill);
imshow(I pin)

title("Pin Cushion")

Pin Cushion

Summary: Display All Geometric Transformations of Checkerboard
figure

subplot(3,3,1),imshow(I),title("Original")
subplot(3,3,2),imshow(I similarity),title("Similarity")

6-61

6 Geometric Transformations

6-62

subplot(3,3,3),imshow(I reflective),title("Reflective Similarity")
subplot(3,3,4),imshow(I affine),title("Affine")
subplot(3,3,5),imshow(I projective),title("Projective")
subplot(3,3,6),imshow(I piecewise linear),title("Piecewise Linear")
subplot(3,3,7),imshow(I sinusoid),title("Sinusoid")
subplot(3,3,8),imshow(I barrel),title("Barrel")

(3,3,9) (

,imshow(I pin),title("Pin Cushion")

Original Similarity Reflective Similarity
>
7 ®
>

Projective Piecewise Linear

Pin Cushion

Note that subplot changes the scale of the images being displayed.

See Also

Functions
checkerboard | imwarp | fitgeotform2d | makeresampler | tformarray

Objects
affinetform2d | projtform2d | PiecewiselLinearTransformation2D |
PolynomialTransformation2D | LocalWeightedMeanTransformation2D

More About
. “Matrix Representation of Geometric Transformations” on page 6-27
. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20

Exploring a Conformal Mapping

Exploring a Conformal Mapping

This example shows how to explore a conformal mapping. Geometric image transformations are
useful in understanding a conformal mapping that is important in fluid-flow problems, and the
mapping itself can be used to transform imagery for an interesting special effect.

Step 1: Select a Conformal Transformation

Conformal transformations, or mappings, have many important properties and uses. One property
relevant to image transformation is the preservation of local shape (except sometimes at isolated
points).

This example uses a 2-D conformal transformation to warp an image. The mapping from output to
input, g: R"2 -> R"2, is defined in terms of a complex analytic function G: C -> C, where

G(z) = (z + 1/z) / 2.

We define g via a direct correspondence between each point (x,y) in R*2 (the Euclidean plane) and
the point z = x + i*yin C (the complex plane),

g(x,y) = (Re(w),Im(w)) = (u,v)
where
w=u+ i*v = G(x + 1i*y).

This conformal mapping is important in fluid mechanics because it transforms lines of flow around a
circular disk (or cylinder, if we add a third dimension) to straight lines. (See pp. 340-341 in Strang,
Gilbert, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986.)

A note on the value of complex variables: although we could express the definition of g directly in
terms of x and y, that would obscure the underlying simplicity of the transformation. This
disadvantage would come back to haunt us in Step 3 below. There, if we worked purely in real
variables, we would need to solve a pair of simultaneous nonlinear equations instead of merely
applying the quadratic formula!

Step 2: Warp an Image Using the Conformal Transformation

We start by loading the peppers image, extracting a 300-by-500 subimage, and displaying it.

A = imread('peppers.png');
A = A(31:330,1:500,:);
figure

imshow(A)

title('Original Image', 'FontSize',14)

6-63

6 Geometric Transformations

6-64

Original Image

Then use maketform to make a custom tform struct with a handle to function conformalInverse
as its INVERSE_FCN argument:

conformal = maketform('custom', 2, 2, [], @conformalInverse, []);
To view conformalInverse use:

type conformallnverse.m

function U = conformalInverse(X, ~)

conformalInverse Inverse conformal transformation.

Supports conformal transformation example, ConformalMappingImageExample.m
("Exploring a Conformal Mapping").

o® o of o°

o°

Copyright 2005-2013 The MathWorks, Inc.

Z = complex(X(:,1),X(:,2));
W= (Z+1./2)/2;
U(:,2) = imag(W);
U(:,1) = real(W);

Horizontal and vertical bounds are needed for mapping the original and transformed images to the
input and output complex planes. Note that the proportions in uData and vData match the height-to-
width ratio of the original image (3/5).

uData
vData

[-1.25 1.25]; % Bounds for REAL(w)
[0.75 -0.75]; % Bounds for IMAG(w)

Exploring a Conformal Mapping

ounds for REAL(z)
ounds for IMAG(z)

xData [-2.4
yData [2.0
We apply imtransform using the SIZE parameter to ensure an aspect ratio that matches the

proportions in xData and yData (6/5), and view the result.

o @

B = imtransform(A, conformal, 'cubic',
'UData', uData, 'VData', vData,...
'XData', xData, 'YData', yData,...
'Size', [300 360], 'FillValues', 255);

figure

imshow(B)

title('Transformed Image', 'FontSize',14)

Transformed Image

Compare the original and transformed images. Except that the edges are now curved, the outer
boundary of the image is preserved by the transformation. Note that each feature from the original
image appears twice in the transformed image (look at the various peppers). And there is a hole in
the middle of the transformed image with four regular cusps around its edges.

In fact, every point in the input w-plane is mapped to two points in the output z-plane, one inside the
unit circle and one outside. The copies inside the unit circle are much smaller than those outside. It's
clear that the cusps around the central hole are just the copies of the four image corners that mapped
inside the unit circle.

Step 3: Construct Forward Transformations

If the transformation created with maketform has a forward function, then we can apply tformfwd
to regular geometric objects (in particular, to rectangular grids and uniform arrays of circles) to
obtain further insight into the transformation. In this example, because G maps two output points to

6-65

6 Geometric Transformations

each input point, there is no unique forward transformation. But we can proceed if we are careful and
work with two different forward functions.

Lettingw = (z + 1/z)/2 and solving the quadratic equation that results,
zZ™2 + 2*w¥z + 1 =0,

we find that

zZ=w+/- sqrt{(w*2 - 1).

The positive and the negative square roots lead to two separate forward transformations. We
construct the first using maketform and a handle to the function, conformalForwardl.

t1l = maketform('custom', 2, 2, @conformalForwardl, [], []1);

To view conformalForwardl use:

type conformalForwardl.m

function X = conformalForwardl(U, ~)

conformalForwardl Forward transformation with positive square root.

Supports conformal transformation example, ConformalMappingImageExample.m
("Exploring a Conformal Mapping").

o o o° o°

o°

Copyright 2005-2013 The MathWorks, Inc.

W = complex(U(:,1),U(:,2));
Z =W+ sqrt(W.”2 - 1);
X(:,2) = imag(Z);

X(:,1) = real(Z);

We construct the second transformation with another function that is identical to
conformalForwardl except for a sign change.

t2 = maketform('custom', 2, 2, @conformalForward2, [], []1);

type conformalForward2.m

function X = conformalForward2(U, ~)
conformalForward2 Forward transformation with negative square root.

Supports conformal transformation example, ConformalMappingImageExample.m
("Exploring a Conformal Mapping").

o® o o o°

o°

Copyright 2005-2013 The MathWorks, Inc.

W = complex(U(:,1),U(:,2));
Z=W - sqrt(W.”2 - 1);
X(:,2) = imag(Z);

X(:,1) = real(Z);

Step 4: Explore the Mapping Using Grid Lines

With the two forward transformations, we can illustrate the mapping of a grid of lines, using
additional helper functions.

6-66

Exploring a Conformal Mapping

f3 = figure('Name', 'Conformal Transformation: Grid Lines');
axIn = conformalSetupInputAxes(subplot(1l,2,1));

ax0Out = conformalSetupOutputAxes(subplot(1l,2,2));
conformalShowLines(axIn, axOut, t1, t2)

% Reduce wasted vertical space in figure
f3.Position = [1 11 0.7] .* f3.Position;

Output Plane

1 Input Plane 2
05 SIEEEE R 1
"é“- ——
E 0 E 0
05 p
.1 -
1 0 1 2
Re{w) .
2 1 0 1 2
Re(z)

You can see that the grid lines are color-coded according to their quadrants in the input plane before
and after the transformations. The colors also follow the transformed grids to the output planes. Note
that each quadrant transforms to a region outside the unit circle and to a region inside the unit circle.
The right-angle intersections between grid lines are preserved under the transformation -- evidence

of the shape-preserving property of conformal mappings -- except for the points at +1 and -1 on the
real axis.

Step 5: Explore the Mapping Using Packed Circles

Under a conformal transformation, small circles should remain nearly circular, changing only in
position and size. Again applying the two forward transformations, this time we map a regular array
of uniformly-sized circles.

f4 = figure('Name', 'Conformal Transformation: Circles');
axIn = conformalSetupInputAxes(subplot(1l,2,1));

ax0ut = conformalSetupOutputAxes(subplot(1,2,2));
conformalShowCircles(axIn, axOut, t1, t2)

% Reduce wasted vertical space in figure
f4.Position = [1 11 0.7] .* f4.Position;

6-67

6 Geometric Transformations

6-68

Output Plane

Input Plane 2
1
0.5 ‘
z =
E 0 E 0
05 p
.1 L
1] 1 2
Rew) :
2 1 0 1 2
Re(z)

You can see that the transform to a circle packing where tangencies have been preserved. In this
example, the color coding indicates use of the positive (green) or negative (blue) square root of w2

- 1. Note that the circles change dramatically but that they remain circles (shape-preservation, once
again).

Step 6: Explore the Mapping Using Images

To further explore the conformal mapping, we can place the input and transformed images on the
pair of axes used in the preceding examples and superpose a set of curves as well.

First we display the input image, rendered semi-transparently, over the input axes of the conformal
map, along with a black ellipse and a red line along the real axis.

figure

axIn = conformalSetupInputAxes(axes);

conformalShowInput(axIn, A, uData, vData)

title('Original Image Superposed on Input Plane', 'FontSize',14)

Exploring a Conformal Mapping

Original Image Superposed on Input Plane

05

Imi{w)

Re(w)

Next we display the output image over the output axes of the conformal map, along with two black
circles and one red circle. Again, the image is semi-transparent.

figure

ax0ut = conformalSetupOutputAxes (axes);

conformalShowQutput(axOut, B, xData, yData)

title('Transformed Image Superposed on OQutput Plane', 'FontSize',14)

6-69

6 Geometric Transformations

6-70

Transformed Image Superposed on Output Plane
257

MATLAB® graphics made it easy to shift and scale the original and transformed images to superpose
them on the input (w-) and output (z-) planes, respectively. The use of semi-transparency makes it
easier to see the ellipse, line, and circles. The ellipse in the w-plane has intercepts at 5/4 and -5/4 on
the horizontal axis and 3/4 and -3/4 on the vertical axis. G maps two circles centered on the origin to
this ellipse: the one with radius 2 and the one with radius 1/2. And, as shown in red, G maps the unit
circle to the interval [-1 1] on the real axis.

Step 7: Obtain a Special Effect by Masking Parts of the Output Image

If the inverse transform function within a custom tform struct returns a vector filled with NaN for a
given output image location, then imtransform (and also tformarray) assign the specified fill
value at that location. In this step we repeat Step 1, but modify our inverse transformation function
slightly to take advantage of this feature.

type conformalInverseClip.m

function U = conformallnverseClip(X, ~)
conformalInverseClip Inverse conformal transformation with clipping.

This is a modification of conformallnverse in which points in X
inside the circle of radius 1/2 or outside the circle of radius 2 map to
NaN + i*NaN.

Supports conformal transformation example, ConformalMappingImageExample.m
("Exploring a Conformal Mapping").

0° 0° o° 0 0P ° o° o°

Exploring a Conformal Mapping

o°

Copyright 2000-2013 The MathWorks, Inc.

Z = complex(X(:,1),X(:,2));

W= (Z+1./2)/2;

g = 0.5 <= abs(Z) & abs(Z) <= 2;
W(~q) = complex(NaN,NaN);

U(:,2) = imag(W);

U(:,1) = real(W);

This is the same as the function defined in Step 2, except for the two additional lines:

g = 0.5 <= abs(Z) & abs(Z) <= 2;
W(~q) = complex(NaN,NaN);

which cause the inverse transformation to return NaN at any point not between the two circles with
radii of 1/2 and 2, centered on the origin. The result is to mask that portion of the output image with
the specified fill value.

ring = maketform('custom', 2, 2, [], @conformalInverseClip, []);
Bring = imtransform(A, ring, 'cubic',...

'UData', uData, 'VData',6 vData,...

'XData', [-2 2], 'YData', yData,...

'Size', [400 400], 'FillValues', 255);
figure
imshow(Bring)
title('Transformed Image With Masking', 'FontSize',14);

6-71

6 Geometric Transformations

6-72

Transformed Image With Masking

The result is identical to our initial transformation except that the outer corners and inner cusps have
been masked away to produce a ring effect.

Step 8: Repeat the Effect on a Different Image

Applying the "ring" transformation to an image of winter greens (hemlock and alder berries) leads to
an aesthetic special effect.

Load the image greens. jpg, which already has a 3/5 height-to-width ratio, and display it.

C = imread('greens.jpg');

figure

imshow(C)

title('Winter Greens Image', 'FontSize',14);

Exploring a Conformal Mapping

Winter Greens Image

Transform the image and display the result, this time creating a square output image.

D = imtransform(C, ring, 'cubic',...
'UData', uData, 'VData', vData,...
'XData', [-2 2], 'YData', [-2 2],...

'Size', [400 400], 'Fillvalues', 255);
figure
imshow(D)

title('Transformed and Masked Winter Greens Image', 'FontSize',614);

6-73

6 Geometric Transformations

Transformed and Masked Winter Greens Image

Notice that the local shapes of objects in the output image are preserved. The alder berries stayed
round!

6-74

Exploring Slices from a 3-Dimensional MRI Data Set

Exploring Slices from a 3-Dimensional MRI Data Set

This example shows how to explore a volume of data by extracting slices through a three-dimensional
MRI data set using imtransform and tformarray functions.

Step 1: Load and View Horizontal MRI

This example uses the MRI data set that comes with MATLAB® and that is used in the help examples
for both montage and immovie. Loading mri.mat adds two variables to the workspace: D (128-
by-128-by-1-by-27, class uint8) and a grayscale colormap, map (89-by-3, class double).

D comprises 27 128-by-128 horizontal slices from an MRI data scan of a human cranium. Values in D
range from 0 through 88, so the colormap is needed to generate a figure with a useful visual range.
The dimensionality of D makes it compatible with montage. The first two dimensions are spatial. The
third dimension is the color dimension, with size 1 because it indexes into the colormap. (size(D, 3)
would be 3 for an RGB image sequence.) The fourth dimension is temporal (as with any image
sequence), but in this particular case it is also spatial. So there are three spatial dimensions in D and
we can use imtransformor tformarray to convert the horizontal slices to sagittal slices (showing
the view from the side of the head) or coronal (frontal) slices (showing the view from the front or
back of the head).

The spatial dimensions of D are ordered as follows:

* Dimension 1: Front to back of head (rostral/anterior to caudal/posterior)

* Dimension 2: Left to right of head

* Dimension 4: Bottom to top of head (inferior to superior).

An important factor is that the sampling intervals are not the same along the three dimensions:

samples along the vertical dimension (4) are spaced 2.5 times more widely than along the horizontal
dimensions.

Load the MRI data set and view the 27 horizontal slices as a montage.
load mri;

montage(D,map)
title("Horizontal Slices")

6-75

6 Geometric Transformations

6-76

Horizontal Slices

Step 2: Extract Sagittal Slice from Horizontal Slices Using imtransform

We can construct a midsagittal slice from the MRI data by taking a subset of D and transforming it to
account for the different sampling intervals and the spatial orientation of the dimensions of D.

The following statement extracts all the data needed for a midsagittal slice.
M1 = D(:,64,:,:); size(M1)
ans = 1x4

128 1 1 27

However we cannot view M1 as an image because it is 128-by-1-by-1-by-27. reshape (or squeeze)
can convert M1 into a 128-by-27 image that is viewable with imshow.

M2 = reshape(M1,[128 27]);
size(M2)

Exploring Slices from a 3-Dimensional MRI Data Set

ans = 1x2

128 27

imshow(M2,map)
title("Sagittal - Raw Data")

Sagittal - Raw Data

The dimensions in M2 are ordered as follows:

* Dimension 1: Front to back of head (rostral to caudal)
* Dimension 2: Bottom to top of head (inferior to superior).

We can obtain a much more satisfying view by transforming M2 to change its orientation and increase
the sampling along the vertical (inferior-superior) dimension by a factor of 2.5—making the sampling
interval equal in all three spatial dimensions. We could do this in steps starting with a transpose, but

the following affine transformation enables a single-step transformation and more economical use of

memory.

TO = maketform("affine",[0 -2.5; 1 0; 0 0]);

The upper 2-by-2 block of the matrix passed to maketform, [0 -2.5;1 0], combines the rotation
and scaling. After transformation we have:

* Dimension 1: Top to bottom of head (superior to inferior).
* Dimension 2: Front to back of head (rostral to caudal)

The call

imtransform(M2,TO, "cubic")

would suffice to apply T to M2 and provide good resolution while interpolating along the top to bottom
direction. However, there is no need for cubic interpolation in the front to back direction, since no
resampling will occur along (output) dimension 2. Therefore we specify nearest-neighbor resampling
in this dimension, with greater efficiency and identical results.

R2 makeresampler(["cubic","nearest"],"fill");
M3 imtransform(M2,T0,R2);

imshow (M3, map)

title("Sagittal - imtransform")

6-77

6 Geometric Transformations

6-78

Sagittal - imtransform

2 T Y

Step 3: Extract Sagittal Slice from the Horizontal Slices Using tformarray

In this step we obtain the same result as step 2, but use tformarray to go from three spatial
dimensions to two in a single operation. Step 2 does start with an array having three spatial
dimensions and end with an array having two spatial dimensions, but intermediate two-dimensional
images (M1 and M2) pave the way for the call to imtransform that creates M3. These intermediate
images are not necessary if we use tformarray instead of imtransform. imtransform is very
convenient for 2-D to 2-D transformations, but tformarray supports N-D to M-D transformations,
where M need not equal N.

Through its TDIMS A argument, tformarray allows us to define a permutation for the input array.
Since we want to create an image with:

* Dimension 1: Superior to inferior (original dimension 4, reversed)

* Dimension 2: Caudal to rostral (original dimension 1)

and extract just a single sagittal plane via the original dimension 2, we specify tdims a =[4 1 2]. We
create a tform via composition starting with a 2-D affine transformation T1 that scales the (new)
dimension 1 by a factor of -2.5 and adds a shift of 68.5 to keep the array coordinates positive. The

second part of the composite is a custom transformation T2 that extracts the 64th sagittal plane using
a very simple INVERSE_FCN. Note that T2 and Tc take a 3-D input to a 2-D input.

Tl = maketform("affine",[-2.5 0; 0 1; 68.5 0]);

inverseFcn = @(X,t) [X repmat(t.tdata,[size(X,1) 1])];
T2 = maketform("custom",3,2,[],inverseFcn,64);
Tc = maketform("composite",T1,T2);

We use the same approach to resampling as before, but include a third dimension.

R3 = makeresampler(["cubic","nearest","nearest"],"fill");

tformarray transforms the three spatial dimensions of D to a 2-D output in a single step. Our output
image is 66-by-128, with the original 27 planes expanding to 66 in the vertical (inferior-superior)
direction.

M4 = tformarray(D,Tc,R3,[4 1 2],[1 2],[66 128],[1,0);
The result is identical to the previous output of imtransform.

imshow (M4, map)
title("Sagittal - TFORMARRAY")

Exploring Slices from a 3-Dimensional MRI Data Set

Sagittal - TFORMARRAY
00 o

A
! 'Iﬁ_--.p

Step 4: Create and Display Sagittal Slices

We create a 4-D array (the third dimension is the color dimension) that can be used to generate an
image sequence that goes from left to right, starts 30 planes in, skips every other plane, and has 35
frames in total. The transformed array has:

* Dimension 1: Top to bottom (superior to inferior)

» Dimension 2: Front to back (rostral to caudal)

* Dimension 4: Left to right.

As in the previous step, we permute the input array using TDIMS A = [4 1 2], again flipping and
rescaling/resampling the vertical dimension. Our affine transformation is the same as the T1 above,

except that we add a third dimension with a (3,3) element of 0.5 and (4,3) element of -14 chosen to
map 30, 32, ... 98 to 1, 2, ..., 35. This centers our 35 frames on the mid-sagittal slice.

T3 = maketform("affine",[-2.5 0 0; 01 0; 00 0.5; 68.50 -14]1);

In our call to tformarray, TSIZE B = [66 128 35] now includes the 35 frames in the 4th, left-to-
right dimension (which is the third transform dimension). The resampler remains the same.

S = tformarray(D,T3,R3,[4 1 2],[1 2 4],[66 128 35]1,[]1,0);

View the sagittal slices as a montage (padding the array slightly to separate the elements of the
montage).

S2 = padarray(S,[6 0 0 0],0,"both");

montage(S2,map)
title("Sagittal Slices")

6-79

6 Geometric Transformations

Sagittal Slices

Step 5: Create and Display Coronal Slices

Constructing coronal slices is almost the same as constructing sagittal slices. We change TDIMS A
from [4 1 2] to [4 2 1]. We create a series of 45 frames, starting 8 planes in and moving from
back to front, skipping every other frame. The dimensions of the output array are ordered as follows:

* Dimension 1: Top to bottom (superior to inferior)
* Dimension 2: Left to right
* Dimension 4: Back to front (caudal to rostral).

T4 = maketform("affine",[-2.5 0 0; 01 0; 00 -0.5; 68.5 0 61]1);

In our call to tformarray, TSIZE B = [66 128 48] specifies the vertical, side-to-side, and front-to-
back dimensions, respectively. The resampler remains the same.

C = tformarray(D,T4,R3,[4 2 1],[1 2 4],[66 128 45],[]1,0);

6-80

Exploring Slices from a 3-Dimensional MRI Data Set

Note that all array permutations and flips in steps 3, 4, and 5 were handled as part of the
tformarray operation.

View the coronal slices as a montage (padding the array slightly to separate the elements of the
montage).

C2 = padarray(C,[6 06 0 0],0,"both");
montage(C2,map)
title("Coronal Slices")

Coronal Slices

See Also
imwarp | affinetform3d | simtform3d

6-81

6 Geometric Transformations

Padding and Shearing an Image Simultaneously

6-82

This example shows how to construct a tform struct that represents a simple shear transformation
and then applies it to an image. We explore how the transformation affects straight lines and circles,
and then use it as a vehicle to explore the various options for image padding that can be used with
imtransformand tformarray.

Step 1: Transform an Image Using Simple Shear

In two dimensions, a simple shear transformation that maps a pair of input coordinates [u v] to a
pair of output coordinates [x y] has the form

X=u+a*v
y=v
where a is a constant.
Any simple shear is a special case of an affine transformation. You can easily verify that

100
[x y1l=[u v 1]*¥[la10
001

yields the values for x and y that you received from the first two equations.

Setting a = 0.45, we construct an affine tform struct using maketform.

a
T

0.45;
maketform('affine', [1 0 0; a10; 00 1]);

We select, read, and view and image to transform.

A = imread('football.jpg"');
hl = figure; imshow(A); title('Original Image');

Padding and Shearing an Image Simultaneously

Original Image

We choose a shade of orange as our fill value.

orange = [255 127 0]';

We are ready to use T to transform A. We could call imtransform as follows:
B = imtransform(A,T, 'cubic', 'FillValues',orange);

but this is wasteful since we would apply cubic interpolation along both columns and rows. (With our
pure shear transform, we really only need to interpolate along each row.) Instead, we create and use
a resampler that applies cubic interpolation along the rows but simply uses nearest neighbor
interpolation along the columns, then call imtransform and display the result.

R = makeresampler({'cubic', 'nearest'}, 'fill");
B = imtransform(A,T,R, 'FillValues', orange);

h2 = figure; imshow(B);

title('Sheared Image');

6-83

6 Geometric Transformations

Sheared Image

Step 2: Explore the Transformation

Transforming a grid of straight lines or an array of circles with tformfwd is a good way to
understand a transformation (as long as it has both forward and inverse functions).

Define a grid of lines covering the original image, and display it over the image Then use tformfwd
to apply the pure shear to each line in the grid, and display the result over the sheared image.

[U,V] meshgrid(0:64:320,0:64:256);
[X,Y] tformfwd(T,U,V);
gray = 0.65 * [1 1 1];

figure(hl);

hold on;

line(U, V, 'Color',gray);
line(U',V','Color',gray);

6-84

Padding and Shearing an Image Simultaneously

Original Image

figure(h2);

hold on;

line(X, Y, 'Color',gray);
line(X',Y','Color',gray);

Sheared Image

You can do the same thing with an array of circles.

6-85

6 Geometric Transformations

gray = 0.65 * [1 1 1];
for u = 0:64:320
for v = 0:64:256
theta = (0 : 32)' * (2 * pi / 32);
uc = u + 20*cos(theta);
vCc = v + 20*sin(theta);
[xc,yc] = tformfwd(T,uc,vc);
figure(hl); line(uc,vc, 'Color',gray);
figure(h2); line(xc,yc, 'Color',gray);
end
end

Original Image

6-86

Padding and Shearing an Image Simultaneously

Sheared Image

Step 3: Compare the ‘'fill', 'replicate’, and 'bound' Pad Methods

When we applied the shear transformation, imtransform filled in the orange triangles to the left and
right, where there was no data. That's because we specified a pad method of ' fill' when calling
makeresampler. There are a total of five different pad method choices (' fill', 'replicate’,
'bound', 'circular’, and 'symmetric'). Here we compare the first three.

First, to get a better look at how the ' fill' option worked, use the 'XData' and 'YData' options
in imtransform to force some additional space around the output image.

R = makeresampler({'cubic', 'nearest'}, 'fill");

Bf = imtransform(A,T,R, 'XData',[-49 500], 'YData',[-49 400],...
'FillValues',orange);

figure, imshow(Bf);
title('Pad Method = ''fill''"');

6-87

6 Geometric Transformations

Pad Method = fill'

Now, try the 'replicate' method (no need to specify fill values in this case).

R = makeresampler({'cubic', 'nearest'}, 'replicate');
Br = imtransform(A,T,R, 'XData',[-49 500], 'YData', [-49 400]);

figure, imshow(Br);
title('Pad Method = ''replicate''');

6-88

Padding and Shearing an Image Simultaneously

Pad Method = 'replicate’

And try the 'bound' method.

R = makeresampler({'cubic', 'nearest'}, 'bound');

Bb = imtransform(A,T,R, 'XData',[-49 500], 'YData',6 [-49 400], ...
'"FillValues',orange);

figure, imshow(Bb);

title('Pad Method = ''bound''');

6-89

6 Geometric Transformations

6-90

Pad Method = 'bound’

Results with ' fill' and 'bound' look very similar, but look closely and you'll see that the edges are
smoother with 'fill'. That's because the input image is padded with the fill values, then the cubic
interpolation is applied across the edge, mixing fill and image values. In contrast, 'bound'
recognizes a strict boundary between the inside and outside of the input image. Points falling outside
are filled. Points falling inside are interpolated, using replication when they're near the edge. A close
up look helps show this more clearly. We choose XData and YData to bracket a point near the lower
right corner of the image, in the output image space, the resize with 'nearest' to preserve the
appearance of the individual pixels.

R = makeresampler({'cubic', 'nearest'}, 'fill");
Cf = imtransform(A,T,R, 'XData', [423 439], 'YData', [245 260], ...
'FillValues',orange);

R = makeresampler({'cubic', 'nearest'}, 'bound"');
Cb = imtransform(A,T,R, 'XData', [423 439], 'YData', [245 260], ...
'"FillValues',orange);

Cf
Cb

imresize(Cf, 12, 'nearest');
imresize(Cb, 12, 'nearest');

Padding and Shearing an Image Simultaneously

figure;
subplot(1,2,1); imshow(Cf); title('Pad Method = ''fill''');
subplot(1,2,2); imshow(Cb); title('Pad Method = ''bound''"');

Pad Method = "fill’ Pad Method = "bound’

Step 4: Exercise the 'circular' and 'symmetric' Pad Methods

The remaining two pad methods are 'circular' (circular repetition in each dimension) and
"symmetric' (circular repetition of the image with an appended mirror image). To show more of the
pattern that emerges, we redefine the transformation to cut the scale in half.

Thalf = maketform('affine',[1 0; a 1; 0 0]/2);

R = makeresampler({'cubic', 'nearest'}, 'circular');

Bc = imtransform(A,Thalf,R, 'XData',[-49 500], 'YData',[-49 400],...
'FillValues',orange);

figure, imshow(Bc);

title('Pad Method = ''circular''');

6-91

6 Geometric Transformations

Pad Method = 'circular

R = makeresampler({'cubic', 'nearest'}, 'symmetric');

Bs = imtransform(A,Thalf,R, 'XData',[-49 500], 'YData',6[-49 400],...
'"FillValues',orange);

figure, imshow(Bs);

title('Pad Method = ''symmetric''');

6-92

Padding and Shearing an Image Simultaneously

Pad Method = 'symmetric’

6-93

Image Registration

This chapter describes the image registration capabilities of the Image Processing Toolbox software.
Image registration is the process of aligning two or more images of the same scene. Image
registration is often used as a preliminary step in other image processing applications.

“Approaches to Registering Images” on page 7-2

“Register Images Using Registration Estimator App” on page 7-6

“Load Images, Spatial Referencing Information, and Initial Transformation” on page 7-14
“Tune Registration Settings in Registration Estimator” on page 7-17

“Export Results from Registration Estimator App” on page 7-20

“Techniques Supported by Registration Estimator” on page 7-22
“Intensity-Based Automatic Image Registration” on page 7-24

“Create an Optimizer and Metric for Intensity-Based Image Registration” on page 7-26
“Use Phase Correlation as Preprocessing Step in Registration” on page 7-27
“Register Multimodal MRI Images” on page 7-32

“Register Multimodal 3-D Medical Images” on page 7-42

“Registering an Image Using Normalized Cross-Correlation” on page 7-50
“Control Point Registration” on page 7-56

“Geometric Transformation Types for Control Point Registration” on page 7-58
“Control Point Selection Procedure” on page 7-60

“Start the Control Point Selection Tool” on page 7-62

“Find Visual Elements Common to Both Images” on page 7-64

“Select Matching Control Point Pairs” on page 7-67

“Export Control Points to the Workspace” on page 7-72

“Find Image Rotation and Scale” on page 7-74

“Use Cross-Correlation to Improve Control Point Placement” on page 7-78
“Register Images with Projection Distortion Using Control Points” on page 7-79

7 Image Registration

Approaches to Registering Images

Image registration is the process of aligning two or more images of the same scene. This process
involves designating one image as the reference image, also called the fixed image, and applying
geometric transformations or local displacements to the other images so that they align with the
reference. Images can be misaligned for a variety of reasons. Commonly, images are captured under
variable conditions that can change the camera perspective or the content of the scene. Misalignment
can also result from lens and sensor distortions or differences between capture devices.

Image registration is often used as a preliminary step in other image processing applications. For
example, you can use image registration to align satellite images or medical images captured with
different diagnostic modalities, such as MRI and SPECT. Image registration enables you to compare
common features in different images. For example, you might discover how a river has migrated, how

an area became flooded, or whether a tumor is visible in an MRI or SPECT image.

Image Processing Toolbox offers three image registration approaches: the interactive Registration
Estimator app, intensity-based automatic image registration, and control point registration.
Computer Vision Toolbox™ offers automated feature detection and matching.

images

Capability “The “Intensity-Based |“Control Point “Automated
Registration Automatic Image (Registration” on |Feature
Estimator App” |[Registration” on |page 7-4 Detection and
on page 7-2 page 7-3 Matching” on
page 7-5
(requires
Computer Vision
Toolbox)
Interactive X
registration
Automated X X
intensity-based
registration
Automated feature (X X
detection
Manual feature X
selection
Automated feature |X X X
matching
Nonrigid X X X
transformation
Fully automatic X X
workflow
Supports 3-D X

The Registration Estimator App

The Registration Estimator app enables you to register 2-D images interactively. You can compare
different registration techniques, tune settings, and visualize the registered image. The app provides

7-2

Approaches to Registering Images

a quantitative measure of quality, and it returns the registered image and the transformation matrix.
The app also generates code with your selected registration technique and settings, so you can apply
an identical transformation to multiple images.

Registration Estimator offers six feature-based techniques, three intensity-based techniques, and
one nonrigid registration technique. For a more detailed comparison of the available techniques, see
“Techniques Supported by Registration Estimator” on page 7-22.

4\ Registration Estimator - J (Moving Image) & | (Fixed Image)

REGISTRATION

o = Bl Bl & B Overay e

Load SURF FAST BRISK Harris i Register | Green-Magenta)
Images + Images =

LOAD TECHMIQUE RUN COMPARISOMN EXPORT a
Registrations Image Overlay Parameters
D Technigue Quality Time Features Matched Features Detected Feature Parameters

Phase Correlation | DRAFT | Projective + |Transformation

2 MSER DRAFT B ot Number of Detected Features
3 SURF DRAFT &4 252, 280

Quality of Matched Features

[Has Rotation

Post-processing

Intensity-Based Automatic Image Registration

“Intensity-Based Automatic Image Registration” on page 7-24 maps pixels in each image based on
relative intensity patterns. You can register both monomodal and multimodal image pairs, and you
can register 2-D and 3-D images. This approach is useful for:

* Registering a large collection of images
* Automated registration
To register images using an intensity-based technique, use imregister and specify the type of

geometric transformation to apply to the moving image. imregister iteratively adjusts the
transformation to optimize the similarity of the two images.

Alternatively, you can estimate a localized displacement field and apply a nonrigid transformation to
the moving image using imregdemons.

7 Image Registration

Control Point Registration

“Control Point Registration” on page 7-56 enables you to select common features in each image
manually. Control point registration is useful when:

* You want to prioritize the alignment of specific features, rather than the entire set of features
detected using automated feature detection. For example, when registering two medical images,
you can focus the alignment on desired anatomical features and disregard matched features that
correspond to less informative anatomical structures.

* Images have repeated patterns that provide an unclear mapping using automated feature
matching. For example, photographs of buildings with many windows, or aerial photographs of
gridded city streets, have many similar features that are challenging to map automatically. In this
case, manual selection of control point pairs can provide a clearer mapping of features, and thus a
better transformation to align the feature points.

Control point registration can apply many types of transformations to the moving image. Global
transformations, which act on the entire image uniformly, include affine, projective, and polynomial
geometric transformations. Nonrigid transformations, which act on local regions, include piecewise
linear and local weighted mean transformations.

Use the Control Point Selection Tool to select control points. Start the tool with cpselect.

|4 Control Point Selection Tool 1 - O >

File Edit View Tools Window Help k.
+ %R E N

Moving Detail: md 200% « | [Lock ratie | 200% & Ficed Detail: fd

Approaches to Registering Images

Automated Feature Detection and Matching

Automated “Feature Detection and Extraction” (Computer Vision Toolbox) detects features such as
corners and blobs, matches corresponding features in the moving and fixed images, and estimates a
geometric transform to align the matched features.

For an example, see “Find Image Rotation and Scale Using Automated Feature Matching” (Computer
Vision Toolbox). You must have Computer Vision Toolbox to use this method.

Note The Registration Estimator app offers six feature-based techniques to register a single pair
of images. However, the app does not provide an automated workflow to register multiple images.

See Also
imregister | imwarp

Related Examples

. “Register Images Using Registration Estimator App” on page 7-6
. “Register Multimodal MRI Images” on page 7-32
. “Register Images with Projection Distortion Using Control Points” on page 7-79

7-3

7

Image Registration

Register Images Using Registration Estimator App

This example shows how to align a pair of images using the Registration Estimator app. Registration
Estimator offers several registration techniques using feature-based, intensity-based, and nonrigid
registration algorithms. For more information, see “Techniques Supported by Registration Estimator”
on page 7-22.

Create two misaligned images in the workspace. This example creates the moving image J by
rotating the fixed image I clockwise by 30 degrees.

I
J

imread("cameraman.tif");
imrotate(I,-30);

Open Registration Estimator

In this example, you can open Registration Estimator from the command window because the
images have no spatial referencing information or initial transformation estimate. Specify the moving
image and the fixed image as the two input arguments.

registrationEstimator(J,I)

If your images have spatial referencing information, or if you want to specify an initial transformation
estimate, then you must load the images using a dialog window. For more information, see “Load
Images, Spatial Referencing Information, and Initial Transformation” on page 7-14.

You can also open Registration Estimator from the MATLAB™ Toolstrip. Open the Apps tab and
click Registration Estimator under Image Processing and Computer Vision. If you open the app
from the toolstrip, you must load the images using a dialog window.

Obtain Initial Registration Estimate

After you load the images, the app displays an overlay of the images and creates three registration
trials: Phase Correlation, MSER, and SURF. These trials appear as drafts in the history list. You
can click on each trial to adjust the registration settings. To create a trial for a different registration
technique, select a technique from the Technique menu.

The default Green-Magenta overlay style shows the fixed image in green and the moving image in
magenta. The overlay looks gray in areas where the two images have similar intensity. Additional
overlay styles assist with visualizing the results of the registration. When you click a feature-based
technique in the history list, the image overlay displays a set of red and green dots connected by
yellow lines. These points are the matched features used to align the images.

Register Images Using Registration Estimator App

4\ Registretion Estimator | (Moving Image) & | (Fixed Image)

REGISTRATION

| 3 I

e | |8 g oE (E P oensye

ot SURF FAST BRISK Harris Regiter (GraanMaganta | B
Imeges ~ Iages | — B

LOAD: TECHNIQUE BLIN COMPARISON EXPORT
Reqistraians Image Quarlay 4 Parameters
D Techniqua Quality Time Features Matched Features Detectad Ceature Parameiers
1 Phase Correlstion |DRAFT l-"fDJE‘Z‘IIVE - |Transformation
2 MSER DRAFT i S Mumber of Detacted Faaturas
3 SURF DRAFT 34 252, 280 —

Quality of Matched Featurcs

\w] Hac Rotation

Post-processing

Run the three default registration trials with the default settings. Click each trial in the history list,
then click Register Images.

After the registration finishes, the trial displays a quality score and computation time. The quality
score is based loosely on the ssim function and provides an overall estimate of registration quality. A
score closer to 1 indicates a higher quality registration. Different registration techniques and settings
can yield similar quality scores but show error in different regions of the image. Inspect the image
overlay to confirm which registration technique is the most acceptable. Colors in the image overlay
indicate residual misalignment.

Note: due to randomness in the registration optimizer, the quality score, registered image, and
geometric transformation can vary slightly between trials despite identical registration settings.

7-7

7 Image Registration

4\ Registretion Estimator | (Moving Image) & | (Fixed Image) o o %

REGISTRATION

| | | .
o & B E i Qelysye W
Toed SURF FAST BRISK Harris || fevister |(GraanMaganta + || Ewpart
|m:g:s Sy = . - o,
LoaD TECHNIQUE BLIN COMPARISON EXPORT =
— 3
Reqistratians Image Cvaray @ Parameters
&) Techniqua Quality Time Features Matched Features Detectad - [ealure Parameters
1 Phase Correletion |0.3166G 081706 | | |Proestve « |Transformation
2 M3ER 0.32889 0.24563 |43 328, 303 Number ci Datocied Feaina:
3 SURF 0.72899 004372 84 252, 280 =

Quality of Matched Featurcs

[w] Hac Rotation

I Post-processing

Refine Registration Settings

After you have an initial registration estimate, adjust registration settings to improve the quality of
the alignment. For more information on available settings, see “Tune Registration Settings in
Registration Estimator” on page 7-17. If you know the conditions under which the images were
obtained, then you can select a different transformation type or clear the Has Rotation option. Post-
processing using nonrigid transformations is available for advanced workflows.

Adjust the settings of the MSER trial. Try increasing the number of detected features and the quality
of matched features independently to see if either improves the quality of the registration.

To increase the number of detected features, click the MSER trial, numbered 2, in the history list. In
the Current Registration Settings panel, drag the Number of Detected Features slider to the right.
When you change the setting, the app creates a new trial, numbered 2.1, in the history list. The
image overlay shows more matched features, as expected.

Register Images Using Registration Estimator App

4\ Registretion Estimator | (Moving Image) & | (Fixed Image)

REGISTRATION
|) 2

e [S: 2 T - > Cuersy Sve

Toed SUFF FAST BRISK Hois 7| Begister [Graen-Magants + JERE
Imzges ~ Images il

LoAD TECHNIQUE BLIN COMPAR EXPORT =
ID Technigus Quality Time Faatures Matched Features Detected eature Parameters
1 Phase Correlztion [0.31666 | 0.61706 Proectwe = [Transformalion
2 M3ER 0.32889 0.24563 |43 328, 303 Niiinber of Datschad Featinss
21 M3ER DRAFT G 539, 534
3 SURF 0.72699 004372 84 252, 280

Quality of Matched Featurcs

[Hac Rotation

Post-processing

To run the registration with these settings, click Register Images. The quality metric of this trial is
less than the quality of the original MSER trial with the default number of matched features. The
image overlay of this trial has an overall magenta tint and a thick green strip along the top of the
man's head and shoulder. Therefore, increasing the number of detected features does not necessarily
improve the quality of the registration.

7

Image Registration

REGISTRATION

4\ Registretion Estimator | (Moving Image) & | (Fixed Image)

] Iﬁl @I @ IQI Cverlay Style w
Toed SURF FAST BRISK Harris *: (GreenMagema || Esport
Imzges ~ e || 110
LOAD TECHNIQUE M COMPARISON EXPORT -
Image Cwerlay @ Parameters Q
&) _—“—'_Fs;r;;iqua Quality Time Featurss Matched Featuras Dstected_ « [eature Parameters
1 |Phase Correlztion |0.3166G 051706 === % [Proestve ~ [Transformation
2 |MeER [ngzsse |024503 |43 328 303 Mumbear of Datctad Fasties
21 | MBER 037029 oo2rdst [|ssmsa —_—
3 SURF

0.72899 0.04372 84 252 260

Quality of Matched Featurcs
r

[w] Hac Rotation

+ Post-processing

7-10

To see the effect of increasing the quality of matched features, click the MSER trial 2 (not 2.1) in the
history list. In the Current Registration Settings panel, drag the Quality of Matched Features
slider to the right. When you change the setting, the app creates a new trial, numbered 2.2, in the
history list. The image overlay displays a smaller number of high quality matched points.

Register Images Using Registration Estimator App

4\ Registretion Estimator | (Moving Image) & | (Fixed Image)

REGISTRATION
e €] 1 L]
Toed SUFF FAST BRISK Hais |~
Imeges ~
LoAD TECHNIQUE
Registraiions
[[s] Techniqua Quality Time Featurss Matched
q Fhase Correletion |0.3166G 0.317C0
s M3ER 0.32889 0.24563 |43
2.1 M3ER 0.37029 0027451 |69
22 M3ER DRAFT 24
3 SURF 072899 004372 |34

L> COverlay Siyle

Register | Graen-Maganta ¥ || =400

[

BUN

Features Detected

328 303
530 034
328 303
252 780

Image Overday

Parameters

Ieature Parameters

Projectve ~* [Transformalion

Mumber of Detacted Faaturas
Quality of Matched Featurcs

[Hac Rotation

Post-processing

To see the registration with these settings, click Register Images. Compared to the other MSER
trials, this trial has the best quality score. There is not a noticeable difference in the visual quality of
the image compared to the original MSER trial with default settings. If you want to see which pixels
differ between the default MSER trial and this trial, change the overlay style to Difference and toggle

between the two trials.

7-11

7 Image Registration

4\ Registretion Estimator | (Moving Image) & | (Fixed Image) - u] e
REGISTRATION
| [W
] 6 I'__]J I_'T“ I_'_]" ! Cverlay Sye
3 g - il PO i R
Toed SUFF FAST BRISK Hatris : (e + | Ewor
Imeges ~ — | =
LosD TECHNIQUE W COMPARISON EXPORT =
e —— - - S — - i
Reqistrations © | Image Ouaray [Parameters
D Techniqua Quality Time Featurss Matched Features Detected | = Meature Parameters
1 Phase Correlction |0.3166G 0.817C6 | | Projective ~ [Transformalion
s M3ER 0.32889 0.24563 |43 328 303 Niumntrer i Deteciad Easniris
2.1 M3ER 0.37029 0027451 |69 530 034 ——
22 M3ER 0.23275 0020075 24 326 303 Quality of Matched Foatures
3 SURF 072899 004372 |34 252 80 _
[w] Hac Rotation
I Post-processing
‘ ¥
14 | 4]

Export Registration Results

When you find an acceptable registration, export the registered image and the geometric
transformation to the workspace. You can use the registration results to apply a similar registration
to multiple frames in an image sequence. To learn more, see “Export Results from Registration
Estimator App” on page 7-20.

This example exports trial 2.2 because it has the best quality score and no severe regions of
misalignment. Click trial 2.2 in the history list, then click Export and select Export Images. In the
Export to Workspace dialog box, assign a name to the registration output. The output is a structure
that contains the final registered image and the geometric transformation.

4\ Export to Workspace — >

Fegistration Results | movingReq

| oK | | cancel |

See Also
Registration Estimator

7-12

Register Images Using Registration Estimator App

More About

. “Approaches to Registering Images” on page 7-2
. “Techniques Supported by Registration Estimator” on page 7-22

7-13

7 Image Registration

Load Images, Spatial Referencing Information, and Initial

Transformation

7-14

To load images from a file, select the Load from file option. In the dialog box, specify the file

You can load images into Registration Estimator from file or from the workspace. You can also
provide optional spatial referencing information and an optional initial geometric transformation.

Load Images from File or Workspace

You can load images into Registration Estimator from file or from the workspace. Although you can
load grayscale or color images, the app converts all RGB images to grayscale by using the rgb2gray
function. Registration Estimator supports only 2-D images.

Loading images from file supports only BMP, JPG, JPEG, TIF, TIFE, PNG, and DCM file types. To work
with a wider range of file formats, load images from the workspace. Registration Estimator
supports any image read into the workspace by the imread function and DICOM image read into the
workspace using the dicomread function.

Load images into the app by clicking the Load Images icon.

path of the moving and fixed images. Use Browse to navigate to a folder.

4\ Load Images to Register

Load Images
Moving Image

Fized Image

Maoving Image
Spatial Referencing Information

#) Default Referencing Information

Spatial Referencing Object

Initial Transformation Object:

MNone -

+'| Preload Default Technigues

Specify 2-0 images at least 1616 pixels

1 Browse

1 Browse

Fixed Image
Spatial Referencing Information

#) Default Referencing Information

Spatial Referencing Object

Cancel

Load Images, Spatial Referencing Information, and Initial Transformation

* To load variables from the workspace, select the Load from workspace option. In the dialog
box, select the name of the variable containing the moving image from the Moving Image menu
and the variable containing the fixed image from the Fixed Image menu.

4\ Load Images to Register — >
Load Images
Moving Image -
Fixed Image -
Maoving Image Fixed Image
Spatial Referencing Information Spatial Referencing Information
#) Default Referencing Information #) Default Referencing Information
Spatial Referencing Object Spatial Referencing Object

Initial Transformation Object:

MNone -

+'| Preload Default Technigues

Specify 2-0 images at least 16x16 pixels Cancel

Provide Spatial Referencing Information

If you have 2-D spatial referencing objects in your workspace, or if you load DICOM images from a
file, then you can provide optional spatial referencing information. Spatial referencing information is
useful if you want to orient the images to a world coordinate system. For more information about
spatial referencing objects, see imref2d.

Note If you load DICOM images into the workspace using dicomread, spatial referencing
information in the metadata is no longer associated with the image data. To preserve spatial
referencing information with DICOM images, either load the images from file or create an imref2d
object from the image metadata. For more information about DICOM metadata, see “Read Metadata
from DICOM Files” on page 3-10.

If you do not have spatial referencing information, then the Spatial Referencing Object and DICOM
Metadata radio buttons are inactive.

7-15

7 Image Registration

Provide an Initial Geometric Transformation

You can provide an optional initial geometric transformation using affine2d and projective2d
geometric transformation objects in your workspace. An initial geometric transformation is useful if
you are processing a batch of images with similar initial misalignment. Once the first moving image
has been registered, you can export the geometric transformation to the workspace and apply the
transformation to other images in the series. See “Export Results from Registration Estimator App”
on page 7-20.

If you do not have a geometric transformation object in your workspace, the Initial Transformation
Object selection box is inactive.

Note If you have a 2-D geometric transformation object that uses the premultiply convention, such
asan affinetform2d or projtform2d object, then you can convert the object to a projective2d
object for use with Registration Estimator. First, get the A property of your geometric
transformation object, then create a projective2d object using the transpose of the A property. For
example, suppose you have a premultiply geometric transformation object called myTform:

A = myTform.A;
newTform = projective2d(A');

See Also

Functions
imread | dicomread

Classes
affinetform2d | projtform2d | affine2d | projective2d | imref2d

Related Examples
. “Register Images Using Registration Estimator App” on page 7-6

7-16

Tune Registration Settings in Registration Estimator

Tune Registration Settings in Registration Estimator

Adjust settings in Registration Estimator based on your registration technique.

Note Due to randomness in the registration optimizer, the quality metric, registered image, and
geometric transformation can vary slightly between trials despite identical registration settings.

Geometric Transformations Supported by Registration Estimator

All feature-based and intensity-based registration techniques allow you to set the transformation
type. For more details about each type of transformation matrix, see “Matrix Representation of
Geometric Transformations” on page 6-27.

* Translation transformations preserve the size and orientation of the image. Each pixel in the
image is displaced the same amount in the same direction.

* Rigid transformations include rotation and translation. Rigid transformations preserve length.

Note Although reflection is a type of rigid transformation, Registration Estimator does not
support reflection.

» Similarity transformations include isotropic scaling, rotation, and translation. Similarity
transformations preserve shape, but not size. When used with a featured-based registration
technique, at least two matched pairs of points are required.

* Affine transformations include shear and all supported similarity transformations. Affine
transformations preserve parallel lines, but not necessarily angles between lines or distances
between points. When used with a featured-based registration technique, at least three matched
pairs of points are required.

* Projective transformations allow tilting in addition to all supported affine transformations. When
used with a featured-based registration technique, at least four matched pairs of points are
required.

Registration |Translation Rigid Similarity Affine Projective
Technique

All Feature- X X X
Based

Techniques

Monomodal X X X X

Intensity

Multimodal X X X X

Intensity

Phase X X X

Correlation

Feature-Based Registration Settings

Feature-based registration allows you to adjust three settings in addition to the geometric
transformation type:

7-17

7 Image Registration

7-18

* Number of detected features. The transformation type determines the minimum number of
matched features required to perform a registration. Similarity transformations require two or
more matched features. Affine transformations require three or more matched features. Projective
transformations require four or more matched features.

* Quality of matched features. The quality value is a combination of matched features options.

* Rotation. By default, feature-based registration allows the moving image to rotate. However, some
imaging scenarios, such as stereoscopy, produce images with identical rotation. If your images
have the same rotation, clearing this option can improve the accuracy of the registration.

Intensity-Based Registration Settings

All intensity-based registration techniques allow you to select the geometric transformation type.
Additional settings are available depending on the registration technique.

Monomodal and multimodal intensity-based registration provide three common settings:

* Normalize. This option scales the pixel values of both images to the same dynamic range.

* Apply Gaussian blur. Smoothing the images with a Gaussian blur can help the optimizer find the
global maximum or minimum of the solution surface. However, smoothing changes the shape of
the surface, and over-smoothing can shift the position of the extrema. Large amounts of blurring
are useful when the images are severely misaligned at the start of the registration, to help the
optimizer search the correct basin of attraction. Small amounts of blurring are useful when the
images start with close alignment.

» Align centers. This option provides an initial transformation that aligns the world coordinates of
the centers of the two images. The geometric option aligns the geometric centers, based on the
spatial referencing information of the images. The center of mass option aligns the centers of
mass, calculated from the weighted mean of pixel intensities.

Monomodal registration enables you to adjust the properties of the regular step gradient descent
optimizer. For more information about the properties of this optimizer, see
RegularStepGradientDescent.

Multimodal registration enables you to adjust the properties of the one plus one evolutionary
optimizer. For more information about the properties of this optimizer, see
OnePlusOneEvolutionary.

Phase correlation enables you to choose to window the frequency-domain representation of the
images. Windowing increases the stability of registration results. If the common features you are
trying to align in your images are oriented along the edges, clearing this option can improve
registration results. For more information about using phase correlation to transform an image, see
imregcorr.

Nonrigid and Post-Processing Settings

Every registration technique in Registration Estimator allows for nonrigid transformations to refine
the registration fit locally. For more information about estimating a displacement field for nonrigid
transformations, see imregdemons.

The nonrigid settings available in Registration Estimator are:

* Number of iterations. This value is the number of iterations on each pyramid level.

Tune Registration Settings in Registration Estimator

» Pyramid levels. The value represents the number of Gaussian pyramid reduction levels. The
maximum number of pyramid levels depends on the size of each dimension in the images. For
example, when the shortest dimension of the fixed and moving images is 256 pixels, at most eight
pyramid levels can be used. For more information about pyramid reduction, see impyramid.

* Smoothing. The value represents the standard deviation of Gaussian smoothing and remains the
same at each pyramid level. Values are in the range [0.5, 3]. Larger values result in smoother
output displacement fields. Smaller values result in more localized deformation in the output
displacement field.

Note Although isotropic scaling and shearing are nonrigid transformations from a mathematical
perspective, these transformations act globally on an image. Enable scaling and shearing in the
Registration Estimator app by selecting an affine or projective transformation type, not by applying a
nonrigid transformation.

See Also
imregcorr | imregdemons

Related Examples
. “Register Images Using Registration Estimator App” on page 7-6

More About

. “Techniques Supported by Registration Estimator” on page 7-22
. “Matrix Representation of Geometric Transformations” on page 6-27

7-19

7 Image Registration

Export Results from Registration Estimator App

7-20

When you find an acceptable registration from Registration Estimator, export the results. You can
use the exported results to apply similar registration to other frames in an image sequence. There are
two options to export the results:

» Export the registered image and the geometric transformation to the workspace. Apply an
identical geometric transformation to other images using imwarp.

* Generate a function with the desired registration technique and settings. Call this function to
register other images using the same settings.

Export Results to the Workspace

To export the registration results to the workspace, click the desired trial in the history list, then click
Export and select Export Images. In the Export to Workspace dialog box, assign a name to the
registration output. The output is a structure that contains the final registered image, the spatial
referencing object, and the geometric transformation used for the registration.

4\ Export to Workspace — >

+'| Registration Results movingReq

(0] 4 Cancel

Generate a Function

To generate MATLAB code that registers images using the desired registration technique and
settings, click the corresponding trial in the history list, then click Export. Select the Generate
Function option. The app opens the MATLAB editor containing a function with the autogenerated
code. To save the code, click Save in the MATLAB editor.

Note If you generate a function using a feature-based registration technique, then you must have
Computer Vision Toolbox to run the function.

The generated function accepts a moving and a fixed image as inputs. The function returns a
structure that contains the final registered image, the spatial referencing object, and the geometric
transformation of the registered image. If you generate a function using a feature-based registration
technique, then the output structure has two additional fields for the moving matched features and
the fixed matched features.

See Also
imwarp

Related Examples
. “Register Images Using Registration Estimator App” on page 7-6

Export Results from Registration Estimator App

More About

. “2-D and 3-D Geometric Transformation Process Overview” on page 6-20

7-21

7 Image Registration

Techniques Supported by Registration Estimator

Feature-Based Registration

Feature-based registration techniques automatically detect distinct image features such as sharp
corners, blobs, or regions of uniform intensity. The moving image undergoes a single global
transformation to provide the best alignment of corresponding features with the fixed image.

I@I FAST detects corner features, especially in scenes of human origin such as streets and indoor
rooms. FAST supports single-scale images and point-tracking.

I@I MinEigen also detects corner features. MinEigen supports single-scale images and point-
tracking.

I@I Harris also detects corner features, using a more efficient algorithm than MinEigen. Harris
supports single-scale images and point-tracking.

I@I BRISK also detects corner features. Unlike the preceding algorithms, BRISK supports changes
in scale and rotation, and point-tracking.

ORB detects corners in images with changes in scale and/or rotation.

S|
Iﬁl SURF detects blobs in images and supports changes in scale and rotation.

S

L — | KAZE detects multiscale blob features from a scale space constructed using nonlinear diffusion.

IEI MSER detects regions of uniform intensity. MSER supports changes in scale and rotation, and is
more robust to affine transformations than the other feature-based algorithms.

In Registration Estimator, you can register images and generate functions for all feature-based
techniques without a Computer Vision Toolbox license. However, to run an autogenerated function
that uses a feature-based registration technique, you must have Computer Vision Toolbox. For more
information, see “Export Results from Registration Estimator App” on page 7-20.

Intensity-Based Registration

Intensity-based registration techniques correlate image intensity in the spatial or frequency domain.
The moving image undergoes a single global transformation to maximize the correlation of its
intensity with the intensity of the fixed image.

7-22

Techniques Supported by Registration Estimator

(1
=~ | Monomodal intensity registers images with similar brightness and contrast that are captured on
the same type of scanner or sensor. For example, use monomodal intensity to register MRI scans
taken of similar subjects using the same imaging sequence.

L=~ | Multimodal intensity registers images with different brightness and contrast. These images can
come from two different types of devices, such as two camera models or two types of medical imaging
systems (such as CT and MRI). These images can also come from a single device. For example, use
multimodal intensity to register images taken with the same camera using different exposure
settings, or to register MRI images acquired during a single session using different imaging
sequences.

Iﬂl Phase correlation registers images in the frequency domain. Like multimodal intensity, phase
correlation is invariant to image brightness. Phase correlation is more robust to noise than the other
intensity-based registration techniques.

Note Phase correlation provides better results when the aspect ratio of each image is square.

Nonrigid Registration

Iﬁl Nonrigid registration applies nonglobal transformations to the moving image. Nonrigid
transformations generate a displacement field, in which each pixel location in the fixed image is
mapped to a corresponding location in the moving image. The moving image is then warped
according to the displacement field and resampled using linear interpolation. For more information
about estimating a displacement field for nonrigid transformations, see imregdemons.

See Also

Related Examples
. “Register Images Using Registration Estimator App” on page 7-6
. “Approaches to Registering Images” on page 7-2

7-23

7 Image Registration

Intensity-Based Automatic Image Registration

Intensity-based automatic image registration is an iterative process. It requires that you specify a
pair of images, a metric, an optimizer, and a transformation type. The metric defines the image
similarity metric for evaluating the accuracy of the registration. This image similarity metric takes
two images and returns a scalar value that describes how similar the images are. The optimizer
defines the methodology for minimizing or maximizing the similarity metric. The transformation type
defines the type of 2-D transformation that aligns the misaligned image (called the moving image)
with the reference image (called the fixed image).

The process begins with the transformation type you specify and an internally determined
transformation matrix. Together, they determine the specific image transformation that is applied to
the moving image with bilinear interpolation.

Next, the metric compares the transformed moving image to the fixed image and a metric value is
computed.

Finally, the optimizer checks for a stop condition. A stop condition is anything that warrants the
termination of the process. In most cases, the process stops when it reaches a point of diminishing
returns or when it reaches the specified maximum number of iterations. If there is no stop condition,
the optimizer adjusts the transformation matrix to begin the next iteration.

St art Inital _
transformation Initial Fixed
TransformlType matric mowving image image
- — Result: Transformed
Image Bilinear moving image Metri
transformation interpolation ric
Result:
Metric value
Optimizer
+ No é:up?
Result Mew transformation matrix
Yes
End

Registered image

Perform intensity-based image registration with the following steps:

1 Read the images into the workspace with imread or dicomread.

2 Create the optimizer and metric. See “Create an Optimizer and Metric for Intensity-Based Image
Registration” on page 7-26.

7-24

Intensity-Based Automatic Image Registration

3 Register the images with imregister.
4 View the results with imshowpair or save a copy of an image showing the results with imfuse.

See Also

Related Examples
. “Register Multimodal MRI Images” on page 7-32

More About

. “Use Phase Correlation as Preprocessing Step in Registration” on page 7-27
. “Approaches to Registering Images” on page 7-2

7-25

7 Image Registration

Create an Optimizer and Metric for Intensity-Based Image
Registration

7-26

You can pass an image similarity metric and an optimizer technique to imregister. An image
similarity metric takes two images and returns a scalar value that describes how similar the images
are. The optimizer you pass to imregister defines the methodology for minimizing or maximizing
the similarity metric.

imregister supports two similarity metrics:

* Mattes mutual information
* Mean squared error

In addition, imregister supports two techniques for optimizing the image metric:

* One-plus-one evolutionary
* Regular step gradient descent

You can pass any combination of metric and optimizer to imregister, but some pairs are better
suited for some image classes. Refer to the table for help choosing an appropriate starting point.

Capture Scenario Metric Optimizer

Monomodal MeanSquares RegularStepGradientDesce
nt

Multimodal MattesMutualInformation |OnePlusOneEvolutionary

Use imregconfig to create the default metric and optimizer for a capture scenario in one step. For
example, the following command returns the optimizer and metric objects suitable for registering
monomodal images.

[optimizer,metric] = imregconfig('monomodal');

Alternatively, you can create the objects individually. This enables you to create alternative
combinations to address specific registration issues. The following code creates the same monomodal
optimizer and metric combination.

optimizer = registration.optimizer.RegularStepGradientDescent();
metric = registration.metric.MeanSquares();

Getting good results from optimization-based image registration can require modifying optimizer or
metric settings. For an example of how to modify and use the metric and optimizer with imregister,
see “Register Multimodal MRI Images” on page 7-32.

See Also
imregister | imregconfig

Use Phase Correlation as Preprocessing Step in Registration

Use Phase Correlation as Preprocessing Step in Registration

This example shows how to use phase correlation as a preliminary step for automatic image
registration. In this process, you perform phase correlation using imregcorr, and then pass the
result of that registration as the initial condition of an optimization-based registration using
imregister. Phase correlation and optimization-based registration are complementary algorithms.
Phase correlation is good for finding gross alignment, even for severely misaligned images.
Optimization-based registration is good for finding precise alignment, given a good initial condition.

Read an image that will be the reference image in the registration.

fixed = imread("cameraman.tif");
imshow(fixed)

Create an unregistered image by deliberately distorting this image using rotation, isotropic scaling,
and shearing in the y direction.

theta = 170;

rot = [
cosd(theta) -sind(theta) 0;
sind(theta) cosd(theta) 0;
00 17];

sc = 2.3;

scale = [sc 0 0; 0 sc 0; 00 11;

sh = 0.1;

shear = [1 sh0; 010; 00 1];

tform = affinetform2d(shear*scale*rot);
moving = imwarp(fixed,tform);

Add noise to the image, and display the result.

7-27

7 Image Registration

moving = imnoise(moving, "gaussian");
imshow(moving)

’

Estimate the registration required to bring these two images into alignment. imregcorr returns a
simtform2d object that defines the transformation.

tformEstimate = imregcorr(moving, fixed)

tformEstimate
simtform2d with properties:

Dimensionality: 2
Scale: 0.4300
RotationAngle: -169.1579
Translation: [257.9866 302.4839]
R: [2x2 double]

7-28

Use Phase Correlation as Preprocessing Step in Registration

A: [3x3 double]

Apply the estimated geometric transform to the misaligned image. Specify the OutputView name-
value argument to ensure the registered image is the same size as the reference image.

Rfixed = imref2d(size(fixed));
movingReg = imwarp(moving,tformEstimate,OutputView=Rfixed);

Display the original image and the registered image in a montage. You can see that imregcorr has
done a good job handling the rotation and scaling differences between the images. The registered
image, movingReg, is very close to being aligned with the original image, fixed. However, some
misalignment remains. imregcorr can handle rotation and scale distortions well, but not shear
distortion.

imshowpair(fixed,movingReg, "montage");

View the aligned image overlaid on the original image, using imshowpair. In this view, imshowpair
uses color to highlight areas of misalignment.

imshowpair(fixed,movingReg, "falsecolor");

7-29

7

Image Registration

7-30

To finish the registration, use imregister, passing the estimated transformation returned by
imregcorr as the initial condition. imregister is more effective if the two images are roughly in
alignment at the start of the operation. The transformation estimated by imregcorr provides this
information for imregister. The example uses the default optimizer and metric values for a
registration of two images taken with the same sensor, which is a monomodal configuration.

[optimizer,metric] = imregconfig("monomodal");

movingRegistered = imregister(moving,fixed, "affine",
optimizer,metric,InitialTransformation=tformEstimate);

Display the result of this registration. Note that imregister achieves a very accurate registration,
given the good initial condition provided by imregcorr.

imshowpair(fixed,movingRegistered,Scaling="joint");

Use Phase Correlation as Preprocessing Step in Registration

See Also
imregcorr | imregister | imregconfig | imwarp

7-31

7 Image Registration

Register Multimodal MRI Images

7-32

This example shows how you can align two magnetic resonance (MRI) images to a common
coordinate system using intensity-based image registration. This approach does not find features or
use control points. Intensity-based registration is often well-suited for medical and remotely sensed
imagery.

Step 1: Load Images

This example uses two MRI images of a knee. The fixed image is a spin echo image, while the moving
image is a spin echo image with inversion recovery. The two sagittal slices were acquired at the same
time but are slightly out of alignment.

fixed = dicomread("kneel.dcm");
moving = dicomread("knee2.dcm");

The imshowpair function is useful to visualize images during every part of the registration process.
Use it to see the two images individually in a montage or display them overlapping to show the
amount of misregistration.

imshowpair(moving, fixed, "montage")
title("Unregistered")

Unregistered

In the overlapping image from imshowpair, gray areas correspond to areas that have similar
intensities, while magenta and green areas show places where one image is brighter than the other.
In some image pairs, green and magenta areas do not always indicate misregistration, but in this
example it is easy to use the color information to see where they do.

imshowpair(moving, fixed)
title("Unregistered")

Register Multimodal MRI Images

Unregistered

Step 2: Set up the Initial Registration

The imregconfig function makes it easy to pick the correct optimizer and metric configuration to
use with imregister. The optimizer and metric variables are objects whose properties control the
registration. For more information, see “Create an Optimizer and Metric for Intensity-Based Image
Registration” on page 7-26.

These two images have different intensity distributions, which suggests a multimodal configuration.
[optimizer,metric] = imregconfig("multimodal");

The distortion between the two images includes scaling, rotation, and possibly shear. Use an affine
transformation to register the images.

registeredDefault = imregister(moving,fixed,"affine",optimizer,metric);

7-33

7 Image Registration

Display the result. It is very rare that imregister will align images perfectly with the default
settings. Nevertheless, using them is a useful way to decide which properties to tune first.

imshowpair(registeredDefault, fixed)
title("A: Default Registration")

A: Default Registration

Step 3: Improve Registration by Tuning Optimizer and Metric

The initial registration is not very good. There are still significant regions of poor alignment,
particularly along the right edge. Try to improve the registration by adjusting the optimizer and
metric configuration properties.

disp(optimizer)

registration.optimizer.OnePlusOneEvolutionary

7-34

Register Multimodal MRI Images

Properties:
GrowthFactor: 1.050000e+00
Epsilon: 1.500000e-06
InitialRadius: 6.250000e-03
MaximumIterations: 100

disp(metric)

registration.metric.MattesMutualInformation

Properties:
NumberOfSpatialSamples: 500
NumberOfHistogramBins: 50
UseAllPixels: 1

The InitialRadius property of the optimizer controls the initial step size used in parameter space
to refine the geometric transformation. When multimodal registration problems do not converge with
the default parameters, InitialRadius is a good first parameter to adjust. Start by reducing the
default value of InitialRadius by a scale factor of 3.5.

optimizer.InitialRadius = optimizer.InitialRadius/3.5;
registeredAdjustedInitialRadius = imregister(moving,fixed,"affine",optimizer,metric);

Display the result. Adjusting InitialRadius has a positive impact. There is a noticeable
improvement in the alignment of the images at the top and right edges.

imshowpair(registeredAdjustedInitialRadius, fixed)
title("B: Adjusted InitialRadius")

7-35

7 Image Registration

7-36

B: Adjusted InitialRadius

The MaximumIterations property of the optimizer controls the maximum number of iterations that
the optimizer will be allowed to take. Increasing MaximumIterations allows the registration search
to run longer and potentially find better registration results. Does the registration continue to
improve if the InitialRadius from the last step is used with a large number of iterations?

optimizer.MaximumIterations = 300;
registeredAdjustedInitialRadius300 = imregister(moving,fixed,"affine",optimizer,metric);

Display the results. Further improvement in registration was achieved by reusing the
InitialRadius optimizer setting from the previous registration and allowing the optimizer to take a
large number of iterations.

imshowpair(registeredAdjustedInitialRadius300, fixed)
title("C: Adjusted InitialRadius, MaximumIterations = 300")

Register Multimodal MRI Images

C: Adjusted InitialRadius, Maximumiterations = 300

Step 4: Improve Registration Using Initial Conditions

Optimization based registration works best when a good initial condition can be given for the
registration that relates the moving and fixed images. A useful technique for getting improved
registration results is to start with more simple transformation types such as rigid or similarity
transformations, and then to use the resulting transformation as an initial condition for more
complicated affine transformation types.

The function imregtform uses the same algorithm as imregister, but returns a geometric
transformation object as output instead of a registered output image. Use imregtform to get an
initial transformation estimate based on a similarity transformation consisting of translation, rotation,
and isotropic scaling. Use the tuned optimizer settings.

tformSimilarity = imregtform(moving,fixed,"similarity",optimizer,metric)

7-37

7 Image Registration

7-38

tformSimilarity =
simtform2d with properties:

Dimensionality: 2
Scale: 1.0390
RotationAngle: -6.1345
Translation: [-51.1491 6.9891]
R: [2x2 double]
A: [3x3 double]

Because the registration is being solved in the default coordinate system, also known as the intrinsic
coordinate system, obtain the default spatial referencing object that defines the location and
resolution of the fixed image.

Rfixed = imref2d(size(fixed));

Use imwarp to apply the geometric transformation output from imregtform to the moving image to
align it with the fixed image. Use the OutputView name-value argument in imwarp to assign to the
moving image the same resolution and world limits as the fixed image.

registeredSimilarity = imwarp(moving,tformSimilarity,OutputView=Rfixed);
Display the result.

imshowpair(registeredSimilarity, fixed)
title("D: Registration Based on Similarity Transformation Model")

Register Multimodal MRI Images

D: Registration Based on Similarity Transformation Model

Refine the registration by using an affine transformation model and specifying the similarity
transformation as the initial condition. The refined estimate for the registration includes the
possibility of shear.

registeredAffineWithIC = imregister(moving, fixed,"affine",optimizer,metric,
InitialTransformation=tformSimilarity);

Display the result. Refining the registration with a similarity initial condition yields a nice registration
result.

imshowpair(registeredAffineWithIC, fixed)
title("E: Registration from Affine Model Based on Similarity Initial Condition")

7-39

7 Image Registration

7-40

E: Registration from Affine Model Based on Similarity Initial Condition

Step 5: Decide When Enough is Enough

Comparing the results of running imregister with different configurations and initial conditions, it
becomes apparent that there are a large number of input parameters that can be varied in
imregister, each of which may lead to different registration results.

It can be difficult to quantitatively compare registration results because there is no one quality metric
that accurately describes the alignment of two images. Often, registration results must be judged
qualitatively by visualizing the results. In the results above, the registration results in C) and E) are
both very good and are difficult to tell apart visually.

Step 6: Alternate Visualizations

Often as the quality of multimodal registrations improve it becomes more difficult to judge the quality
of registration visually. This is because the intensity differences can obscure areas of misalignment.

Register Multimodal MRI Images

Sometimes switching to a different display mode for imshowpair exposes hidden details. (This is not
always the case.)

See Also
imregister | imregconfig | imwarp | imref2d | OnePlusOneEvolutionary |
MattesMutualInformation | MeanSquares | RegularStepGradientDescent

7-41

7 Image Registration

Register Multimodal 3-D Medical Images

7-42

This example shows how you can automatically align two volumetric images using intensity-based
registration.

In registration problems, consider one image to be the fixed image and the other image to be the
moving image. The goal of registration is to align the moving image with the fixed image. This
example uses two approaches to automatically align volumetric images:

* Register the images directly using imregister.

* Estimate the geometric transformation required to map the moving image to the fixed image, then
apply the transformation using imwarp.

Unlike some other techniques, imregister and imregtform do not find features or use control
points. Intensity-based registration is often well-suited for medical and remotely sensed imagery.

Load Images

This example uses a CT image and a T1 weighted MR image collected from the same patient at
different time. The 3-D CT and MRI data sets were provided by Dr. Michael Fitzpatrick as part of The
Retrospective Image Registration Evaluation (RIRE) Dataset.

This example specifies the MRI image as the fixed image and the CT image as the moving image. The
data is stored in the file format used by the Retrospective Image Registration Evaluation (RIRE)
Project. Use multibandread to read the binary files that contain image data. Use the
helperReadHeaderRIRE function to obtain the metadata associated with each image.

fixedHeader
movingHeader

helperReadHeaderRIRE("rirePatient@O07MRTL.header");
helperReadHeaderRIRE("rirePatient007CT.header");

fixedVolume = multibandread("rirePatient@O7MRT1.bin",
[fixedHeader.Rows, fixedHeader.Columns, fixedHeader.Slices],
"intl6=>single",0, "bsq","ieee-be");

movingVolume = multibandread("rirePatient007CT.bin",
[movingHeader.Rows,movingHeader.Columns,movingHeader.Slices],
"intl6=>single",0,"bsq","ieee-be");

The helperVolumeRegistration function is a helper function that is provided to help judge the
quality of 3-D registration results. You can interactively rotate the view and both axes will remain in
sync.

figure
helperVolumeRegistration(fixedVolume,movingVolume);

https://rire.insight-journal.org/index.html
https://rire.insight-journal.org/download.html
https://rire.insight-journal.org/download.html

Register Multimodal 3-D Medical Images

You can also use imshowpair to look at single planes from the fixed and moving volumes to get a
sense of the overall alignment of the volumes. In the overlapping image from imshowpair, gray
areas correspond to areas that have similar intensities, while magenta and green areas show places
where one image is brighter than the other. Use imshowpair to observe the misregistration of the
image volumes along an axial slice taken through the center of each volume. It is clear that the
images have different spatial referencing information, such as different world limits and pixel extents.

centerFixed = size(fixedVolume,3)/2;

centerMoving = size(movingVolume,3)/2;

figure
imshowpair(movingVolume(:, :,centerMoving), fixedVolume(:,:,centerFixed))
title("Unregistered Axial Slice")

7-43

7 Image Registration

Unregistered Axial Slice

You can improve the display and registration results by incorporating spatial referencing information.
For this data, the resolution of the CT and MRI data sets is defined in the image metadata. Use this
metadata to create imref3d spatial referencing objects.

Rfixed = imref3d(size(fixedVolume), fixedHeader.PixelSize(2),
fixedHeader.PixelSize (1), fixedHeader.SliceThickness)

Rfixed =
imref3d with properties:

XWorldLimits: [0.6250 320.6250]
YWorldLimits: [0.6250 320.6250]
ZWorldLimits: [2 106]
ImageSize: [256 256 26]
PixelExtentInWorldX: 1.2500

7-44

Register Multimodal 3-D Medical Images

PixelExtentInWorldY: 1.2500
PixelExtentInWorldZ: 4
ImageExtentInWorldX: 320
ImageExtentInWorldY: 320
ImageExtentInWorldZ: 104

XIntrinsicLimits:
YIntrinsicLimits:
ZIntrinsicLimits:

[0.5000 256.5000]
[0.5000 256.5000]
[0.5000 26.5000]

Rmoving = imref3d(size(movingVolume) , movingHeader.PixelSize(2),

movingHeader.PixelSize(1),movingHeader.SliceThickness)

Rmoving =
imref3d with properties:

XWorldLimits: [0.3268 334.9674]

YWorldLimits: [0.3268 334.9674]

ZWorldLimits: [2 114]

ImageSize: [512 512 28]

PixelExtentInWorldX: 0.6536
PixelExtentInWorldY: 0.6536
PixelExtentInWorldZ: 4
ImageExtentInWorldX: 334.6406
ImageExtentInWorldY: 334.6406
ImageExtentInWorldz: 112

XIntrinsiclLimits:
YIntrinsicLimits:
ZIntrinsiclLimits:

[0.5000 512.5000]
[0.5000 512.5000]
[0.5000 28.5000]

The properties of the spatial referencing objects define where the associated image volumes are in
the world coordinate system and what the pixel extent in each dimension is. The X\WorldLimits
property of Rmoving defines the position of the moving volume in the X dimension. The
PixelExtentInWorld property defines the size of each pixel in world units in the X dimension
(along columns). The moving volume extends from 0.3269 to 334.97 mm in the world X coordinate
system and each pixel has an extent of 0.6536 mm. Units are in millimeters because the header
information used to construct the spatial referencing was in millimeters. The
ImageExtentInWorldX property determines the full extent of the moving image volume in world
units.

Approach 1: Register Images Using imregister

The imregister function enables you to obtain a registered output image volume that you can view
and observe directly to access the quality of registration results.

Pick the correct optimizer and metric configuration to use with imregister by using the
imregconfig function. These two images are from two different modalities, MRI and CT, so the
"multimodal" option is appropriate. Change the value of the InitialRadius property of the
optimizer to achieve better convergence in registration results.

[optimizer,metric] = imregconfig("multimodal");
optimizer.InitialRadius = 0.004;

The misalignment between the two volumes includes translation and rotation so use a rigid
transformation to register the images. Specify the spatial referencing information so that the
algorithm used by imregister will converge to better results more quickly.

7-45

7 Image Registration

7-46

movingRegisteredVolume = imregister(movingVolume,Rmoving, fixedVolume,Rfixed,
"rigid",optimizer,metric);

Display an axial slice taken through the center of the registered volumes to get a sense of how
successful the registration is. In addition to aligning the images, the registration process adjusts the
spatial referencing information of the moving image so that it is consistent with the fixed image. The
images are now the same size and are successfully aligned.

figure
imshowpair(movingRegisteredVolume(:,:,centerFixed), fixedVolume(:,:,centerFixed));
title("Axial Slice of Registered Volume")

Axial Slice of Registered Volume

Use helperVolumeRegistration again to view the registered volume to continue judging the
success of registration.

helperVolumeRegistration(fixedVolume,movingRegisteredVolume);

Register Multimodal 3-D Medical Images

300

100 200 100 200

100 100

300

Approach 2: Estimate and Apply 3-D Geometric Transformation

The imregister function registers images but does not return information about the geometric
transformation applied to the moving image. When you are interested in the estimated geometric
transformation, you can use the imregtform function to get a geometric transformation object that
stores information about the transformation. imregtform uses the same algorithm as imregister
and takes the same input arguments as imregister.

tform = imregtform(movingVolume,Rmoving, fixedVolume,Rfixed,
"rigid",optimizer,metric)

tform =
rigidtform3d with properties:

Dimensionality: 3
Translation: [-15.8648 -17.5692 29.1830]
R: [3x3 double]
A: [4x4 double]

The property A defines the 3-D affine transformation matrix used to align the moving image to the
fixed image.

tform.A

ans = 4x4

0.9704 0.0228 0.2404 -15.8648

7-47

7 Image Registration

7-48

-0.0143 0.9992 -0.0369 -17.5692
-0.2410 0.0324 0.9700 29.1830
0 0 0 1.0000

The transformPointsForward function can be used to determine where a point [u,v,w] in the
moving image maps as a result of the registration. Because spatially referenced inputs were specified
to imregtform, the geometric transformation maps points in the world coordinate system from
moving to fixed. The transformPointsForward function is used below to determine the
transformed location of the center of the moving image in the world coordinate system.

centerXWorld = mean(Rmoving.XWorldLimits);
centerYWorld = mean(Rmoving.YWorldLimits);
centerZWorld = mean(Rmoving.ZWorldLimits);

[xWorld,yWorld, zWorld] = transformPointsForward(tform,
centerXWorld, centerYWorld, centerZWorld) ;

You can use the worldToSubscript function to determine the element of the fixed volume that
aligns with the center of the moving volume.

[r,c,p] = worldToSubscript(Rfixed,xWorld,yWorld, zWorld)

r =116
c = 132
p =13

Apply the geometric transformation estimate from imregtform to a 3-D volume using the imwarp
function. The "OutputView" name-value argument is used to define a spatial referencing argument
that determines the world limits and resolution of the output resampled image. You can produce the
same results given by imregister by using the spatial referencing object associated with the fixed
image. This creates an output volume in which the world limits and resolution of the fixed and moving
image are the same. Once the world limits and resolution of both volumes are the same, there is pixel
to pixel correspondence between each sample of the moving and fixed volumes.

movingRegisteredVolume = imwarp(movingVolume,Rmoving, tform,
"bicubic",OutputView=Rfixed);

View an axial slice through the center of the registered volume produced by imwarp.

figure
imshowpair(movingRegisteredVolume(:,:,centerFixed),
fixedVolume(:, :,centerFixed));

title("Axial Slice of Registered Volume")

Register Multimodal 3-D Medical Images

Axial Slice of Registered Volume

See Also
imregister | imregconfig | imwarp | imregtform | imref3d

7-49

7 Image Registration

Registering an Image Using Normalized Cross-Correlation

This example shows how to find a template image within a larger image. Sometimes one image is a
subset of another. Normalized cross-correlation can be used to determine how to register or align the
images by translating one of them.

Step 1: Read Image

onion = imread("onion.png");
peppers = imread("peppers.png");

imshow(onion)

imshow(peppers)

7-50

Registering an Image Using Normalized Cross-Correlation

Step 2: Choose Subregions of Each Image

It is important to choose regions that are similar. The image sub_onion will be the template, and
must be smaller than the image sub_peppers. You can get these subregions using either the non-
interactive script below or the interactive script.

% non-interactively

rect onion = [111 33 65 58];

rect peppers = [163 47 143 151];

sub_onion = imcrop(onion,rect onion);
sub_peppers = imcrop(peppers,rect peppers);

o°

OR

interactively
sub _onion,rect onion] = imcrop(onion); % choose the pepper below the onion
sub_peppers,rect peppers] = imcrop(peppers); % choose the whole onion

)
©
)
©
)
©

[
[

% display sub images
imshow(sub onion)

7-51

7 Image Registration

imshow(sub_peppers)

Step 3: Do Normalized Cross-Correlation and Find Coordinates of Peak

Calculate the normalized cross-correlation and display it as a surface plot. The peak of the cross-
correlation matrix occurs where the subimages are best correlated. normxcorr2 only works on
grayscale images, so we pass it the red plane of each subimage.

Cc = normxcorr2(sub _onion(:,:,1),sub peppers(:,:,1));
figure

surf(c)

shading flat

7-52

Registering an Image Using Normalized Cross-Correlation

250

Step 4: Find the Total Offset Between the Images

The total offset or translation between images depends on the location of the peak in the cross-
correlation matrix, and on the size and position of the subimages.

% offset found by correlation

[max_c,imax] = max(abs(c(:)));

[ypeak, xpeak] = ind2sub(size(c),imax(1));

corr_offset = [(xpeak-size(sub _onion,2))
(ypeak-size(sub onion,1))];

% relative offset of position of subimages
rect offset = [(rect peppers(l)-rect onion(1))
(rect _peppers(2)-rect onion(2))1];

% total offset

offset = corr_offset + rect offset;
xoffset offset(1);

yoffset offset(2);

Step 5: See if Onion Image was Extracted from Peppers Image

Figure out where onion falls inside of peppers.

xbegin = round(xoffset + 1);
xend = round(xoffset + size(onion,2));
ybegin = round(yoffset + 1);
yend = round(yoffset + size(onion,l));

7-53

7 Image Registration

% extract region from peppers and compare to onion
extracted onion = peppers(ybegin:yend,xbegin:xend,:);
if isequal(onion,extracted onion)

disp("onion.png was extracted from peppers.png")
end

onion.png was extracted from peppers.png

Step 6: Pad Onion Image to Size of Peppers Image

Pad the onion image to overlay on peppers, using the offset determined above.
recovered onion = uint8(zeros(size(peppers)));

recovered onion(ybegin:yend,xbegin:xend,:) = onion;
imshow(recovered onion)

Step 7: Use Alpha Blending to Show Images Together

Display one plane of the peppers image with the recovered onion image using alpha blending.

imshowpair(peppers(:,:,1),recovered onion,"blend")

7-54

Registering an Image Using Normalized Cross-Correlation

7-35

7 Image Registration

Control Point Registration

Image Processing Toolbox provides tools to support point mapping to determine the parameters of
the transformation required to bring an image into alignment with another image. In point mapping,
you pick pairs of control points in two images that identify the same features or landmarks in the
images. Then, infer a geometric transformation from the positions of these control points. Finally, you
apply the geometric transformation to the moving image, resulting in an image that is aligned with
the fixed image.

The figure provides an illustration of this process. See “Register Images with Projection Distortion
Using Control Points” on page 7-79 for an extended example.

Maoving image Fixed image

Image to be_,J O l«— Reference
registered image

Select control points using
cpselect

:

Fine tune control points using
cpcorr (optional)

Estimate transformation using
fitgeotform2d

o

Perform the spatial transformation
using imwarp

Registered
image —™

7-56

Control Point Registration

You may need to perform several iterations of this process, experimenting with different types of
transformations, before you achieve a satisfactory result. Sometimes, you can perform successive

registrations, removing gross global distortions first, and then removing smaller local distortions in
subsequent passes.

See Also
cpselect | cpcorr | fitgeotform2d | imwarp

Related Examples

. “Register Images with Projection Distortion Using Control Points” on page 7-79
More About
. “Control Point Selection Procedure” on page 7-60

. “Approaches to Registering Images” on page 7-2

7-357

7 Image Registration

Geometric Transformation Types for Control Point Registration

The fitgeotform2d function can infer the parameters from control point pairs for the following
types of geometric transformations, listed in order of complexity.

Transformation Type Description Minimum Example
Number of
Control Point
Pairs
"similarity" Use this transformation when shapes in the 2
moving image are unchanged, but the image is ::E 030
distorted by some combination of translation,
rotation, and isotropic scaling. Straight lines
remain straight, and parallel lines are still
parallel.
"reflectivesimilarit |Same as "similarity" with the addition of 3
y" optional reflection. ::E 0&0
"affine" Use this transformation when shapes in the 3 \$
moving image exhibit shearing. Straight lines ::E %\
remain straight, and parallel lines remain
parallel, but rectangles become parallelograms.
"projective" Use this transformation when the scene appears |4 ::E ‘33‘
tilted. Straight lines remain straight, but
parallel lines converge toward a vanishing
point.
"polynomial” Use this transformation when objects in the 6 (order 2) ::E #
image are curved. The higher the order of the
polynomial, the better the fit, but the result can |10 (order 3)
contain more curves than the fixed image.
15 (order 4)
"pwl" Use this transformation (piecewise linear) when |4 ::E E::
parts of the image appear distorted differently.
“lwm" Use this transformation (local weighted mean), |6 (12 ::E !ﬁ
when the distortion varies locally and piecewise |[recommended)
linear is not sufficient.

7-58

The first five transformations, "similarity", "reflectivesimilarity", "affine",
"projective"”, and "polynomial", are global transformations. In these transformations, a single
mathematical expression applies to an entire image. The last two transformations, "pwl" (piecewise
linear) and "1wm" (local weighted mean), are local transformations. In these transformations,
different mathematical expressions apply to different regions within an image. When exploring how
different transformations affect the images you are working with, try the global transformations first.
If these transformations are not satisfactory, try the local transformations: the piecewise linear
transformation first, and then the local weighted mean transformation.

Your choice of transformation type affects the number of control point pairs you must select. For
example, a similarity transformation without reflection requires at least two control point pairs. A
fourth order polynomial transformation requires 15 control point pairs. For more information about
these transformation types, and the special syntaxes they require, see cpselect.

Geometric Transformation Types for Control Point Registration

See Also
fitgeotform2d

Related Examples

. “Register Images with Projection Distortion Using Control Points” on page 7-79
More About

. “Control Point Registration” on page 7-56

. “Control Point Selection Procedure” on page 7-60

. “Approaches to Registering Images” on page 7-2

7-59

7 Image Registration

Control Point Selection Procedure

7-60

To specify control points in a pair of images interactively, use the Control Point Selection Tool,
cpselect. The tool displays the image you want to register, called the moving image, next to the
reference image, called the fixed image.

Specifying control points is a four-step process:

Start the tool on page 7-62, specifying the moving image and the fixed image.

2 Use navigation aids to explore the image on page 7-64, looking for visual elements that you can
identify in both images. cpselect provides many ways to navigate around the image. You can
pan and zoom to view areas of the image in more detail.

3 Specify matching control point pairs on page 7-67 in the moving image and the fixed image.
Save the control points on page 7-72 in the workspace.

The following figure shows the default appearance of the tool when you first start it.

Control Point Selection Procedure

::)t:itiction Zoom controls Pan images Magnification
i - i
\ T ControliPoint Selection T "\ EI
ile Ediff View Window Help k]
s -. o alle o
Moving Detail: moon_moving 200% - | [Pl Lock i'atiu 200% - Fixed Detail: moon_fixed

Detail
Windows s

Overview
windows e

Detail
rectangles =T

See Also
cpselect

More About

. “Start the Control Point Selection Tool” on page 7-62
. “Control Point Registration” on page 7-56

7-61

7

Image Registration

Start the Control Point Selection Tool

7-62

To use the Control Point Selection Tool, enter the cpselect command at the MATLAB prompt. As
arguments, specify the image you want to register (the moving image) and the image you want to
compare it to (the fixed image).

The cpselect command has other optional arguments. You can import existing control points, so
that you can use the Control Point Selection Tool to modify, delete, or add to existing control points.
For example, you can restart a control point selection session by including a cpstruct structure as
the third argument. For more information about restarting sessions, see “Export Control Points to the
Workspace” on page 7-72.

For simplicity, this example uses the same image as the moving and the fixed image, and no prior
control points are imported. To walk through an example of an actual registration, see “Register
Images with Projection Distortion Using Control Points” on page 7-79.

moon_fixed = imread("moon.tif");
moon_moving = moon_fixed;
cpselect(moon _moving, moon_ fixed);

When the Control Point Selection Tool starts, it contains three primary components:

* Detail windows—The two windows displayed at the top of the tool are called the Detail windows.
These windows show a close-up view of a portion of the images you are working with. The moving
image is on the left and the fixed image is on the right.

* Overview windows—The two windows displayed at the bottom of the tool are called the Overview
windows. These windows show the images in their entirety, at the largest scale that fits the
window. The moving image is on the left and the fixed image is on the right. You can control
whether the Overview window appears by using the View menu.

* Detail rectangles—Superimposed on the images displayed in the two Overview windows is a
rectangle, called the Detail rectangle. This rectangle controls the part of the image that is visible
in the Detail window. By default, at startup, the detail rectangle covers one quarter of the entire
image and is positioned over the center of the image. You can move the Detail rectangle to change
the portion of the image displayed in the Detail windows.

The following figure shows these components of the Control Point Selection Tool.

Start the Control Point Selection Tool

Moving Detail: moon_moving

200% = | [C] Lock ratio | |200% - GIREC Dl ot

Detail
windows =

Overview
) -
windows

Detail
rectangles =

The next step is to use navigation aids to explore the image, looking for visual elements shared by
both images. For more information, see “Find Visual Elements Common to Both Images” on page 7-

64.

See Also

cpselect

More About

. “Find Visual Elements Common to Both Images” on page 7-64
. “Export Control Points to the Workspace” on page 7-72

. “Control Point Selection Procedure” on page 7-60

7-63

7 Image Registration

Find Visual Elements Common to Both Images

7-64

To find visual elements that are common to both images, you can change the section of the image
displayed in the Detail view. You can also zoom in on a part of the image to view it in more detail. The
following sections describe the different ways to change your view of the images in the Control Point
Selection Tool.

Use Scroll Bars to View Other Parts of an Image

To view parts of an image that are not visible in the Detail or Overview windows, use the scroll bars
provided for each window.

As you scroll the image in the Detail window, note how the Detail rectangle moves over the image in
the Overview window. The position of the Detail rectangle always shows the portion of the image in
the Detail window.

Use the Detail Rectangle to Change the View

To get a closer view of any part of the image, move the Detail rectangle in the Overview window over
that section of the image. The Control Point Selection Tool displays that section of the image in the
Detail window at a higher magnification than the Overview window.

To move the detail rectangle,

Move the pointer into the Detail rectangle. The cursor changes to the fleur shape, 3
2 Press and hold the mouse button to drag the detail rectangle anywhere on the image.

As you move the Detail rectangle over the image in the Overview window, the view of the image
displayed in the Detail window changes.

Pan the Image Displayed in the Detail Window

To change the section of the image displayed in the Detail window, use the pan tool to move the
image in the window.

To use the pan tool,

1 Click the Pan button |ﬂ| in the Control Point Selection Tool toolbar or select Pan from the

Tools menu.
2 Move the pointer over the image in the Detail window. The cursor changes to the hand shape,

.

Press and hold the mouse button. The cursor changes to a closed fist shape, 7. Use the mouse
to move the image in the Detail window.

As you move the image in the Detail window, the Detail rectangle in the Overview window moves.

Zoom In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole image in context, you
can zoom in or zoom out on the images displayed. You can also zoom in or out on an image by

Find Visual Elements Common to Both Images

changing the magnification. See “Specify the Magnification of the Images” on page 7-65 for more
information.

To zoom in or zoom out on the fixed or moving images,

1

Click the appropriate magnifying glass button on the Control Point Selection Tool toolbar or
select Zoom In or Zoom Out from the Tools menu.

Zoom in Zoom out

\
® 'El/

Move the pointer over the image in the Detail window that you want to zoom in or out on. The

cursor changes to the appropriate magnifying glass shape, such as &L Position the cursor over
a location in the image and click the mouse. With each click, the Control Point Selection Tool
changes the magnification of the image by a preset amount. (See “Specify the Magnification of
the Images” on page 7-65 for a list of some of these magnifications.) cpselect centers the new
view of the image on the spot where you clicked.

Another way to use the Zoom tool to zoom in on an image is to position the cursor over a location
in the image. While pressing and holding the mouse button, draw a rectangle defining the area
you want to zoom in on. The Control Point Selection Tool magnifies the image so that the chosen
section fills the Detail window. The tool resizes the detail rectangle in the Overview window as
well.

The size of the Detail rectangle in the Overview window changes as you zoom in or out on the
image in the Detail window.

To keep the relative magnifications of the fixed and moving images synchronized as you zoom in
or out, click the Lock ratio check box. See “Lock the Relative Magnification of the Moving and
Fixed Images” on page 7-66 for more information.

Specify the Magnification of the Images

To enlarge an image to get a closer look or to shrink an image to see the whole image in context, use
the magnification edit box. (You can also use the Zoom buttons to enlarge or shrink an image. See
“Zoom In and Out on an Image” on page 7-64 for more information.)

To change the magnification of an image:

1

2

Move the cursor into the magnification edit box of the window you want to change. The cursor
changes to the text entry cursor.

Type a new value in the magnification edit box and press Enter, or click the menu associated
with the edit box and choose from a list of preset magnifications. The Control Point Selection Tool
changes the magnification of the image and displays the new view in the appropriate window. To
keep the relative magnifications of the fixed and moving images synchronized as you change the
magnification, click the Lock ratio check box. See “Lock the Relative Magnification of the
Moving and Fixed Images” on page 7-66 for more information.

7-65

7 Image Registration

Magnification edit box Magnification menu
| Vi
Moving Detail: moon_moving M t R [Loc 7 2005 - Fixed Detail: moon_fixed
: X - Ay a

Fit to window f

Lock the Relative Magnification of the Moving and Fixed Images

To keep the relative magnification of the moving and fixed images automatically synchronized in the
Detail windows, click the Lock Ratio check box.

When the Lock Ratio check box is selected, the Control Point Selection Tool changes the
magnification of both the moving and fixed images when you zoom in or out on either one of the
images on page 7-64 or specify a magnification value on page 7-65 for either of the images.

Lock magnification ratio check box

The next step is to specify matching control point pairs. For more information, see “Select Matching
Control Point Pairs” on page 7-67.

See Also

More About

. “Start the Control Point Selection Tool” on page 7-62
. “Select Matching Control Point Pairs” on page 7-67
. “Control Point Selection Procedure” on page 7-60

7-66

Select Matching Control Point Pairs

Select Matching Control Point Pairs

The Control Point Selection Tool enables you to pick control points in the image to be registered (the
moving image) and the reference image (the fixed image). When you start cpselect, point selection
is enabled, by default.

You specify control points by pointing and clicking in the moving and fixed images, in either the Detail
or the Overview windows. Each point you specify in the moving image must have a match in the fixed
image. The following sections describe the ways you can use the Control Point Selection Tool to
choose control point pairs.

Pick Control Point Pairs Manually

To specify a pair of control points in your images,
1 Click the Control Point Selection button ** in the Control Point Selection Tool toolbar or select
Add Points from the Tools menu. Control point selection mode is active by default. The cursor

changes to a cross-hairs shape +
2 Position the cursor over a feature you have visually selected in any of the images displayed and

click the mouse button. cpselect places a control point symbol, 1, at the position you
specified, in both the Detail window and the corresponding Overview window. cpselect
numbers the points as you select them. The appearance of the control point symbol indicates its
current state. The circle around the point indicates that it is the currently selected point. The
number identifies control point pairs.

Note Depending on where in the image you select control points, the symbol for the point may
be visible in the Overview window, but not in the Detail window.

3 You can select another point in the same image or you can move to the corresponding image and
create a match for the point. To create the match for this control point, position the cursor over
the same feature in the corresponding Detail or Overview window and click the mouse button.
cpselect places a control point symbol at the position you specified, in both the Detail and
Overview windows. You can work in either direction: picking control points in either of the Detail
windows, moving or fixed, or in either of the Overview windows, moving or fixed.

To match an unmatched control point, select it, and then pick a point in the corresponding window.
You can move on page 7-70 or delete on page 7-70 control points after you create them.

The following figure illustrates control points in several states.

7-67

7 Image Registration

Selected,

unmatched_ﬂ“: ”

point

7-68

Matched pair of points

Fixed Detail: moon_fixed

Moving Detail: moon_moving ck ratio ||200% -

!

.

1 e
. &

A [

Use Control Point Prediction

Instead of picking matching control points yourself, you can let the Control Point Selection Tool
estimate the match for the control points you specify, automatically. The Control Point Selection Tool
determines the position of the matching control point based on the geometric relationship of the
previously selected control points, not on any feature of the underlying images.

To illustrate point prediction, this figure shows four control points selected in the moving image,
where the points form the four corners of a square. (The control point selections in the figure do not
attempt to identify any landmarks in the image.) The figure shows the picking of a fourth point, in the
left window, and the corresponding predicted point in the right window. Note how the Control Point
Selection Tool places the predicted point at the same location relative to the other control points,
forming the bottom right corner of the square.

Select Matching Control Point Pairs

Click Point Prediction button. F‘uljsition cursor irl1 window and TDD| clrelatelsa matchecli point, .
I click to select point. identifying it as a predicted point.
4| C |:':+trol Point Selection Tool 1 ! |E\|E@
File L Edit View Tools Window Help &
AL ICEC R
Moving Detail: moon_meving | 200% « | | Lock ratio || 2005 == | Fixed Detail: moon_fixed

Note By default, the Control Point Selection Tool does not include predicted points in the set of valid
control points returned in movingPoints or fixedPoints. To include predicted points, you must
accept them by selecting the points and fine-tuning their position with the cursor. When you move a
predicted point, the Control Point Selection Tool changes the symbol to indicate that it has changed
to a standard control point. For more information, see “Move Control Points” on page 7-70.

To use control point prediction,

7-69

7 Image Registration

7-70

Click the Control Point Prediction button {%.

Note The Control Point Selection Tool predicts control point locations based on the locations of
previous control points. You cannot use point prediction until you have a minimum of two pairs of
matched points. Until this minimum is met, the Control Point Prediction button is disabled.

Position the cursor anywhere in any of the images displayed. The cursor changes to the cross-
hairs shape, —|_

You can pick control points in either of the Detail windows, moving or fixed, or in either of the
Overview windows, moving or fixed. You also can work in either direction: moving-to-fixed image
or fixed-to-moving image.

Click either mouse button. The Control Point Selection Tool places a control point symbol at the
position you specified and places another control point symbol for a matching point in all the

Fl

other windows. The symbol for the predicted point contains the letter P, 3 indicating that it is
a predicted control point.

To accept a predicted point, select it with the cursor and move it. The Control Point Selection
Tool removes the P from the point.

Move Control Points

To move a control point,

1

2

Click the Control Point Selection button .
Position the cursor over the control point you want to move. The cursor changes to the fleur

F Y

shape, S

Press and hold the mouse button and drag the control point. The state of the control point
changes to selected when you move it.

If you move a predicted control point, the state of the control point changes to a regular
(nonpredicted) control point.

Delete Control Points

To delete a control point, and its matching point, if one exists,

1
2

3

Click the Control Point Selection button .

Click the control point you want to delete. Its state changes to selected. If the control point has a
match, both points become active.

Delete the point (or points) using one of these methods:

* Pressing the Backspace key

* Pressing the Delete key

* Choosing one of the delete options from the Edit menu

Using this menu, you can delete individual points or pairs of matched points, in the moving or
fixed images.

Select Matching Control Point Pairs

Delete Active Pair
Delete Active Inpuk Poink

Delete Active Base Poink

See Also

More About

. “Find Visual Elements Common to Both Images” on page 7-64
. “Export Control Points to the Workspace” on page 7-72
. “Control Point Selection Procedure” on page 7-60

7-71

7

Image Registration

Export Control Points to the Workspace

7-72

After you specify control points, you must save them in the workspace to make them available for the
next step in image registration, processing by fitgeotform2d.

To save control points to the workspace, select File on the Control Point Selection Tool menu bar,
then choose the Export Points to Workspace option. The Control Point Selection Tool displays this
dialog box:

i "

Export Points to Workspace EI@

| Moving points of valid pairs |movingPoints
| Fixed pointz of valid pairs fixedPoints

Structure with all points cpstruct

OK] | Cancel

By default, the Control Point Selection Tool saves the coordinates of valid control points. The Control
Point Selection Tool does not include unmatched and predicted points in the movingPoints and
fixedPoints arrays. The arrays are n-by-2 arrays, where n is the number of valid control point pairs
you selected. The two columns represent the x- and y-coordinates of the control points, respectively,
in the intrinsic coordinate system of the image.

This example shows the movingPoints array containing four valid pairs of control points.
movingPoints =

215.6667 262.3333
225.7778 311.3333
156.5556 340.1111
270.8889 368.8889

To save the current state of the Control Point Selection Tool, including unpaired and predicted control
points, select the Structure with all points check box.

P "

Export Points to Workspace EI@

| Moving points of valid pairs |movingPoints

| Fioxed points of valid pairs fixedPoints
| Structure with all points cpstruct
Ok] | Cancel

This option saves the positions of all control points and their current state in a cpstruct structure.

Export Control Points to the Workspace

cpstruct =

inputPoints: [4x2 double]
basePoints: [4x2 double]
inputBasePairs: [4x2 double]
ids: [4x1 doublel]
inputIdPairs: [4x2 double]
baseIdPairs: [4x2 double]
isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the point where you left off.
This option is useful if you are picking many points over a long time and want to preserve unmatched
and predicted points when you resume work.

To extract the arrays of valid control point coordinates from a cpstruct, use the cpstruct2pairs
function.

The Control Point Selection Tool also asks if you want to save your control points when you exit the
tool.

See Also
cpselect | cpstruct2pairs | fitgeotform2d

More About

. “Select Matching Control Point Pairs” on page 7-67
. “Control Point Selection Procedure” on page 7-60

. “Image Coordinate Systems” on page 2-63

7-73

7 Image Registration

Find Image Rotation and Scale

This example shows how to align or register two images that differ by a rotation and a scale change.
You can calculate the rotation angle and scale factor and transform the distorted image to recover the
original image.

Step 1: Read Image

Read an image into the workspace.

original = imread("cameraman.tif");

imshow(original)

text(size(original,2),size(original,1l)+15,
"Image courtesy of Massachusetts Institute of Technology",
FontSize=7,HorizontalAlignment="right")

Image courtesy of Massachusetts Institute of Technology

Step 2: Resize and Rotate the Image

Create a distorted version of the image by resizing and rotating the image. Note that imrotate
rotates images in a counterclockwise direction when you specify a positive angle of rotation.

scaleFactor = 0.7;
distorted = imresize(original,scaleFactor);

theta = 30;
distorted = imrotate(distorted, theta);
imshow(distorted)

7-74

Find Image Rotation and Scale

Step 3: Select Control Points

This example specifies three pairs of control points.

movingPoints = [128.6 75.4; 151.9 163.9; 192.1 118.6];
fixedPoints = [169.1 73.6; 135.6 199.9; 217.1 171.9];

If you want to pick the control points yourself, then you can use the Control Point Selection Tool.
Open this tool by using the cpselect function.

[movingPoints, fixedPoints] = cpselect(distorted,original, "Wait",true);
Step 4: Estimate Affine Transformation

Fit a geometric transformation to your control points using the fitgeotform2d function. This
example fits a similarity transformation because the distortion consists only of rotation and isotropic
scaling.

tform = fitgeotform2d(movingPoints, fixedPoints,"similarity");

Step 5: Recover Scale Factor and Rotation Angle

The geometric transformation, tform, represents how to transform the moving image to the fixed
image. If you want to determine the scale factor and rotation angle that you applied to the fixed
image to create the moving image, then use the inverse of the geometric transformation.

tformInv = invert(tform)

tformInv =
simtform2d with properties:

Dimensionality: 2

Scale: 0.7014
RotationAngle: -29.6202

7-75

7 Image Registration

7-76

Translation: [0.0051 89.0695]
R: [2x2 doublel]
A: [3x3 double]

The values of the Scale property should match the value of scaleFactor that you set in Step 2:
Resize and Rotate the Image.

The value of the RotationAngle property should have the same magnitude as the angle theta that
you set in Step 2: Resize and Rotate the Image. However, the angle in RotationAngle has the
opposite sign as theta. The sign is opposite because the simtform2d object stores the rotation
angle as the amount of rotation from the positive x-axis to the positive y-axis in intrinsic coordinates.
For images, the positive x direction points to the right and the positive y axis points downward,
therefore a positive rotation angle is in the clockwise direction. A positive rotation angle in the
clockwise direction corresponds to a negative rotation angle in the counterclockwise direction, and
vice versa.

Step 6: Recover Original Image

Recover the original image by transforming distorted, the rotated-and-scaled image, using the
geometric transformation tform and what you know about the spatial referencing of original. Use
the OutputView name-value argument to specify the resolution and grid size of the resampled
output image.

Roriginal
recovered

imref2d(size(original));
imwarp(distorted, tform,OutputView=Roriginal);

Compare recovered to original by looking at them side-by-side in a montage.

montage({original, recovered})

The recovered (right) image quality does not match the original (left) image because of the distortion
and recovery process. In particular, the image shrinking causes information loss. The artifacts around

Find Image Rotation and Scale

the edges are due to the limited accuracy of the transformation. If you were to pick more points in
Step 3: Select Control Points, the transformation would be more accurate.

See Also
imresize | imrotate | cpselect | fitgeotform2d | imwarp | imref2d

More About

. “Select Matching Control Point Pairs” on page 7-67

. “Control Point Selection Procedure” on page 7-60

. “Find Image Rotation and Scale Using Automated Feature Matching” (Computer Vision Toolbox)

7-77

7 Image Registration

Use Cross-Correlation to Improve Control Point Placement

You can fine-tune the control points you selected using cpselect. Using cross-correlation, you can
sometimes improve the points you selected by eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the moving and fixed images, along with the
images themselves, to the cpcorr function.

moving pts adj = cpcorr(movingPoints, fixedPoints,moving, fixed);

The cpcorr function defines 11-by-11 pixel regions around each control point in the moving image
and around the matching control point in the fixed image. The function then calculates the
correlation between the values at each pixel in the region. Next, the cpcorr function finds the
position with the highest correlation value and uses it as the optimal position of the control point. The
function only moves control points up to four pixels based on the results of the cross-correlation.

Note Features in the two images must be at the same scale and have the same orientation. They
cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their unmodified values in
movingPoints.

See Also
cpselect | cpcorr | cpstruct2pairs

More About
. “Select Matching Control Point Pairs” on page 7-67
. “Control Point Selection Procedure” on page 7-60

7-78

Register Images with Projection Distortion Using Control Points

Register Images with Projection Distortion Using Control
Points

This example shows how to register two images by selecting control points common to both images
and inferring a geometric transformation that aligns the control points.

Read Images

Read the image westconcordorthophoto.png into the workspace. This image is an orthophoto
that has already been registered to the ground.

ortho = imread("westconcordorthophoto.png");

imshow(ortho)

text(size(ortho,2),size(ortho,1)+15,
"Image courtesy of Massachusetts Executive Office of Environmental Affairs",
FontSize=7,HorizontalAlignment="right");

oy & - L

Image courtesy of Massachusetts Executive Office of Environmental Affairs

Read the image westconcordaerial.png into the workspace. This image was taken from an
airplane and is distorted relative to the orthophoto. Because the unregistered image was taken from a
distance and the topography is relatively flat, it is likely that most of the distortion is projective.

7-79

7 Image Registration

unregistered = imread("westconcordaerial.png");

imshow(unregistered)

text(size(unregistered,2),size(unregistered,1)+15,
"Image courtesy of mPower3/Emerge",
FontSize=7,HorizontalAlignment="right");

Image courtesy of mPowerd/Emerge

Select Control Point Pairs

To select control points interactively, open the Control Point Selection tool by using the cpselect
function. Control points are landmarks that you can find in both images, such as a road intersection
or a natural feature. Select at least four pairs of control points so that cpselect can fit a projective
transformation to the control points. After you have selected corresponding moving and fixed points,
close the tool to return to the workspace.

[mp,fp]l = cpselect(unregistered,ortho,Wait=true);

7-80

Register Images with Projection Distortion Using Control Points

E Contrel Peint Selection Tool 1

File Edit View Tools Window Help

+%Qan
Moving Detail: unregistered im% - | ||:| Ebck riio ||400% G | Fixed Detail: ortho
: . s .
T, : g
. ;I"‘IJ' P, e
LT ., | ey
9 o o ' 0 k" L™ g:#
il : _ b e At

Infer Geometric Transformation

Find the parameters of the projective transformation that best aligns the moving and fixed points by
using the fitgeotform2d function.

t = fitgeotform2d(mp, fp,"projective")

t =
projtform2d with properties:

Dimensionality: 2
A: [3x3 double]

Transform Unregistered Image

To apply the transformation to the unregistered aerial image, use the imwarp function. Specify that
the size and position of the transformed image match the size and position of the ortho image by
using the OutputView name-value argument.

Rfixed = imref2d(size(ortho));
registered = imwarp(unregistered,t,OutputView=Rfixed);

7-81

7 Image Registration

See the result of the registration by overlaying the transformed image over the original orthophoto.

imshowpair(ortho, registered, "blend")

See Also
cpselect | cpcorr | cpstruct2pairs | fitgeotform2d

More About
. “Select Matching Control Point Pairs” on page 7-67
. “Control Point Selection Procedure” on page 7-60

7-82

Designing and Implementing Linear
Filters for Image Data

The Image Processing Toolbox software provides a number of functions for designing and
implementing two-dimensional linear filters for image data. This chapter describes these functions
and how to use them effectively.

“What Is Image Filtering in the Spatial Domain?” on page 8-2

“Filter Grayscale and Truecolor (RGB) Images Using imfilter Function” on page 8-5
“imfilter Boundary Padding Options” on page 8-9

“Change Filter Strength Radially Outward” on page 8-12

“Noise Removal” on page 8-18

“Apply Gaussian Smoothing Filters to Images” on page 8-24

“Reduce Noise in Image Gradients” on page 8-30

“What is Guided Image Filtering?” on page 8-39

“Perform Flash/No-flash Denoising with Guided Filter” on page 8-40
“Segment Thermographic Image After Edge-Preserving Filtering” on page 8-44
“Integral Image” on page 8-48

“Apply Multiple Filters to Integral Image” on page 8-50

“Filter Images Using Predefined Filter” on page 8-55

“Generate HDL Code for Image Sharpening” on page 8-58

“Adjust Image Intensity Values to Specified Range” on page 8-65

“Gamma Correction” on page 8-67

“Contrast Enhancement Techniques” on page 8-69

“Specify Contrast Adjustment Limits” on page 8-73

“Adjust Image Contrast Using Histogram Equalization” on page 8-75
“Adaptive Histogram Equalization” on page 8-80

“Enhance Color Separation Using Decorrelation Stretching” on page 8-83
“Enhance Multispectral Color Composite Images” on page 8-90
“Low-Light Image Enhancement” on page 8-100

“Design Linear Filters in the Frequency Domain” on page 8-107

8 Designing and Implementing Linear Filters for Image Data

What Is Image Filtering in the Spatial Domain?

Filtering is a technique for modifying or enhancing an image. For example, you can filter an image to
emphasize certain features or remove other features. Image processing operations implemented with
filtering include smoothing, sharpening, and edge enhancement.

Filtering is a neighborhood operation, in which the value of any given pixel in the output image is
determined by applying some algorithm to the values of the pixels in the neighborhood of the
corresponding input pixel. A pixel's neighborhood is some set of pixels, defined by their locations
relative to that pixel. (See “Neighborhood or Block Processing: An Overview” on page 18-2 for a
general discussion of neighborhood operations.) Linear filtering is filtering in which the value of an
output pixel is a linear combination of the values of the pixels in the input pixel's neighborhood.

Convolution

Linear filtering of an image is accomplished through an operation called convolution. Convolution is a
neighborhood operation in which each output pixel is the weighted sum of neighboring input pixels.
The matrix of weights is called the convolution kernel, also known as the filter. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

For example, suppose the image is

A=1[17 24 1 8 15
23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9]

and the correlation kernel is
h = [8 1 6

3 5 7
4 9 2]

You would use the following steps to compute the output pixel at position (2, 4):

1 Rotate the correlation kernel 180 degrees about its center element to create a convolution
kernel.

Slide the center element of the convolution kernel so that it lies on top of the (2, 4) element of A.
Multiply each weight in the rotated convolution kernel by the pixel of A underneath.
Sum the individual products from step 3.

Hence the (2, 4) output pixel is
1-2+8-9+415-4+7-T+14 5+16-3+13-6+20-1+22.-8=1575

The calculation is shown in the following figure.

8-2

What Is Image Filtering in the Spatial Domain?

Values of roioted o mealution kernel

Imoge pixel values n| s | 7 'fm?\‘ 1
A, Am—|— (enterof kemel

I IR T TR

10 1 19 N i

1 18 15 1 g

Computing the (2, 4) Output of Convolution

Correlation

The operation called correlation is closely related to convolution. In correlation, the value of an
output pixel is also computed as a weighted sum of neighboring pixels. The difference is that the
matrix of weights, in this case called the correlation kernel, is not rotated during the computation.
The Image Processing Toolbox filter design functions return correlation kernels.

The following figure shows how to compute the (2, 4) output pixel of the correlation of A, assuming h
is a correlation kernel instead of a convolution kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of the (2, 4) element of A.
2 Multiply each weight in the correlation kernel by the pixel of A underneath.
3 Sum the individual products.

The (2, 4) output pixel from the correlation is
1 8+8-1+15 B8+7-3+14-5+18-7+13-4+20.-9+228.2 =585

Values of correlation kernel

=17 L) 1 B[15

Image pixel values] - 93 5 7 "fld?\‘ 18
b, Am—— (enkrofkernel

Computing the (2, 4) Output of Correlation

See Also
imfilter | conv2 | convn

8-3

8 Designing and Implementing Linear Filters for Image Data

Related Examples
. “Design Linear Filters in the Frequency Domain” on page 8-107
. “Noise Removal” on page 8-18

8-4

Filter Grayscale and Truecolor (RGB) Images Using imfilter Function

Filter Grayscale and Truecolor (RGB) Images Using imfilter
Function

This example shows how to filter a 2-D grayscale image with a 5-by-5 filter containing equal weights
(often called an averaging filter) using imfilter. The example also shows how to filter an truecolor
(RGB) image with the same filter. A truecolor image is a 3-D array of size m-by-n-by-3, where the last
dimension represents the three color channels. Filtering a truecolor image with a 2-D filter is
equivalent to filtering each plane of the image individually with the same 2-D filter.

There are several MATLAB® functions that perform 2-D and multidimensional filtering that can be
compared to imfilter. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional convolution. However,
each of these filtering functions always converts the input to double, and the output is always
double. Also, these MATLAB® filtering functions always assume the input is zero padded, and they
do not support other padding options. In contrast, imfilter does not convert input images to
double. The imfilter function also offers a flexible set of boundary padding options.

Filter 2-D Grayscale Image with an Averaging Filter
Read a grayscale image into the workspace.

I = imread("coins.png");

Display the original image.

figure

imshow(1I)
title("Original Image")

Original Image

Create a normalized, 5-by-5, averaging filter.

8 Designing and Implementing Linear Filters for Image Data

8-6

h = ones(5,5)/25;

Apply the averaging filter to the grayscale image using imfilter.
I2 = imfilter(I,h);

Display the filtered image.

figure

imshow(I2)
title("Filtered Image")

Filtered Image

Filter Multidimensional Truecolor (RGB) Image Using imfilter

Read a truecolor image into the workspace.

rgb = imread("peppers.png");
imshow(rgb);

Filter Grayscale and Truecolor (RGB) Images Using imfilter Function

Create a filter. This averaging filter contains equal weights, and causes the filtered image to look
more blurry than the original.

h = ones(5,5)/25;
Filter the image using imfilter and display it.
rgh2 = imfilter(rgb,h);

figure
imshow(rgb2)

8 Designing and Implementing Linear Filters for Image Data

See Also
imfilter

More About
. “What Is Image Filtering in the Spatial Domain?” on page 8-2

8-8

imfilter Boundary Padding Options

imfilter Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of the convolution or
correlation kernel is usually off the edge of the image, as illustrated in the following figure.

What value shaukd thess
aufside pingk have?

7 7 7

i N g
17 n] k_Hj.q]E_ (enter of kemel
w5 | o7t |

=
=
—
=
=~
wa

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by assuming that they are 0.

This is called zero padding and is illustrated in the following figure.

uside pixek are
asumed 1o be (0.

(enter of kemnel

1M | 18 25 1 I

Zero Padding of Outside Pixels

When you filter an image, zero padding can result in a dark band around the edge of the image, as
shown in this example.

I imread("eight.tif");
h ones(5,5) / 25;
I2 = imfilter(I,h);

8-9

Designing and Implementing Linear Filters for Image Data

imshow(I), title("Original Image");
figure, imshow(I2), title("Filtered Image with Black Border")

Filtered Image with Black Border

Original Image

To eliminate the zero-padding artifacts around the edge of the image, imfilter offers an alternative
boundary padding method called border replication. In border replication, the value of any pixel
outside the image is determined by replicating the value from the nearest border pixel. This is

illustrated in the following figure.

These pive | values are replicated
fram boundary pingk.

1 B 15
3 7
17 M 1 r H?\1 15
| (enter of kemel

7]]
11 § T | 14 | 1t

1 18 15 1 g

Replicated Boundary Pixels

To filter using border replication, pass the additional optional argument "replicate" to imfilter.

I3 = imfilter(I,h,"replicate");
figure, imshow(I3);
title("Filtered Image with Border Replication")

8-10

imfilter Boundary Padding Options

Filtered Image with Border Replication

The imfilter function supports other boundary padding options, such as "circular" and
"symmetric".

See Also
imfilter

Related Examples

. “Design Linear Filters in the Frequency Domain” on page 8-107

8-11

8 Designing and Implementing Linear Filters for Image Data

Change Filter Strength Radially Outward

This example shows how to create filters that blur and darken pixels